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ABSTRACT
How to generate multi-view images with realistic-looking appear-
ance from only a single view input is a challenging problem. In
this paper, we attack this problem by proposing a novel image gen-
eration model termed VariGANs, which combines the merits of
the variational inference and the Generative Adversarial Networks
(GANs). It generates the target image in a coarse-to-fine manner
instead of a single pass which suffers from severe artifacts. It first
performs variational inference to model global appearance of the
object (e.g., shape and color) and produces coarse images of dif-
ferent views. Conditioned on the generated coarse images, it then
performs adversarial learning to fill details consistent with the in-
put and generate the fine images. Extensive experiments conducted
on two clothing datasets, MVC and DeepFashion, have demon-
strated that the generated images with the proposed VariGANs are
more plausible than those generated by existing approaches, which
provide more consistent global appearance as well as richer and
sharper details.
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1 INTRODUCTION
Products in e-commerce websites are usually displayed with im-
ages from different views to attract customers. Multi-view images
provide vivid and appealing product illustrations to potential cus-
tomers. Unfortunately, such multi-view images are not always avail-
able. As shown in Fig. 1, when one occasionally notices a desired
clothing item from a magazine, which is from a certain view, she
may be interested to see the appearance from other views, such as
the side or back. This kind of appearance is usually hard to imagine,
especially for a well-designed fashion clothing. An automatic image
generation system is desired in such scenario, which has practical
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Figure 1: It is appealing to generate multi-view images from
a single-view input, especially for a fashion clothing.

meaning for e-commerce platforms and other applications, such
as photo/video editing and AR/VR. Given a single-view clothing
image, we aim to generate other views of the input image without
requiring any extra information.

Image generation is a challenging task due to the high dimen-
sionality of images and the complex configuration and layout of
image contents. To tackle this challenging problem of generat-
ing multi-view images from a single-view observation, many ap-
proaches [2, 11, 36] first construct the 3D structure of the object and
then generate desired target view images from that model. Other
methods [19, 32, 37] learn the transformation between the input
view and target view by relocating pixels. However, those methods
mainly synthesize rigid objects, e.g.cars, chairs with simple tex-
tures. The generation of deformable objects with rich details such
as clothes or human body has not been fully explored.

Beneficial from advanced models like Variational Autoencoder
(VAE) [12]) and Generative Adversarial Networks (GANs) [7], re-
cent works have demonstrated promising performance on realistic
image generation. VAE adopts variational inference plus deep rep-
resentation learning to learn a complex generative model and gets
rid of the time-consuming sampling process. However, VAE usually
fails to provide rich details in generated images. Another popular
generative model, GANs, introduces a real-fake discriminator to
supervise the learning of the generative model. Facilitated with the
competition between discriminator and generator, GANs are ad-
vantageous in providing realistic details, but they usually introduce
artifacts to the global appearance, especially when the image to be
generated is large.

In this paper, we propose a novel image generationmodel, named
Variational GANs (VariGANs) that combines the strengths of varia-
tional inference and adversarial training. The proposed model over-
comes the limitations of GANs in modeling global appearance, by
introducing internal variational inference in the generative model
learning. A low resolution (LR) image capturing global appearance
is firstly generated by variational inference. This process learns to
draw rough shapes and colors of another image with a different
view, conditioned on the given image and target view. With the gen-
erated LR image, VariGANs then performs adversarial learning to
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Figure 2: The photo-realistic image generation process of
the proposed VariGANs. The low resolution (LR) images are
firstly generated by variational inference for new views v1
and v2. The high resolution (HR) images are then generated
by filling the details and correcting the defects through ad-
versarial learning.

generate realistic high resolution (HR) image by filling richer details
to the low resolution image. Since the LR image only has basic con-
tour of the target object in a desired view, the fine image generation
module just needs to focus on drawing details and rectifying defects
in low resolution images. Fig. 2 illustrates the multi-view image
generation process from coarse to fine, conditioned on a single-
view input image. Decomposing the complicated image generation
process into the above two complementary learning processes sig-
nificantly simplifies the learning and produces more realistic-look
multi-view images. Note that VariGANs is a generic model and can
be applied to other image generation applications like style transfer,
which will be explored in the future.

The main contributions are summarized as follows:
(1) To our best knowledge, this is the first work to address the

new problem of generatingmulti-view clothing images based
on a given clothing image of a certain view, which has prac-
tical significance.

(2) A novel VariGANs generation architecture is proposed for
multi-view clothing image generation that adopts a novel
coarse-to-fine image generation strategy. The proposedmodel
is effective in both capturing global appearance and drawing
richer details consistent with the input conditioned image.

(3) The proposed model is verified on two largest clothes im-
age datasets and experiments demonstrate its superiority
through comprehensive evaluations compared with other
state-of-the-art approaches. The model and relevant code
will be released upon acceptance.

2 RELATEDWORK
Image Generation. Image generation has been a heated topic

in recent years. Many approaches have been proposed with the
emergence of deep learning techniques. Variational Autoencoder
(VAE) [12] generates images based on the probabilistic graphical
models, and are optimized by maximizing the lower bound of the

data likelihood. Yan et.al. [31] propose the Attribute2Image, which
generates images from visual attributes. They modeled an image
as a composite of foreground and background and extended the
VAE with disentangled latent variables. Gregor et.al. [8] propose
the DRAW, which integrates the attention mechanism with VAE
to generate realistic images recurrently by patches. Different from
the generative parametric approaches, Generative Adversarial Net-
works (GANs) [7] introduce a generator and a discriminator in
their model. The generator is trained to generate images to confuse
the discriminator, and the discriminator is trained to distinguish
between real and fake samples. Since then, many GANs-based
models have been proposed, including Conditional GANs [16], Bi-
GANs [4, 6], Semi-suprvised GANs [17], InfoGANs [3] and Auxil-
iary Classifier GANs [18]. GANs have been used to generate images
from labels [16], texts [21, 34] and also images [1, 10, 20, 25, 27, 30,
33, 35, 38, 39]. Our proposed model is also an image-conditioned
GANs, with generation capability strengthened by variational in-
ference.

View Synthesis. Images with different views of the object can be
easily genertaed with the 3D modeling of the object [2, 5, 11, 13, 36].
Hinton et.al. [9] proposed a transforming auto-encoder to generate
images with view variance. Rezende et.al. [22] introduced a general
framework to learn 3D structures from 2D observations with a
3D-2D projection mechanism. Yan et.al. [32] proposed Perspective
Transformer Nets to learn the projection transformation after recon-
structing the 3D volume of the object. Wu et.al. [29] also proposed
the 3D-2D projection layers that enable the learning of 3D object
structures using annotated 2D keypoints. They further proposed
the 3D-GANs [29] which generates 3D objects from a probabilistic
space by leveraging recent advances in volumetric convolutional
networks and generative adversarial nets. Zhou et.al. [37] propose
to synthesize novel views of the same object or scene corresponding
by learning appearance flows. Most of these models are trained
with the target view images or image pairs which can be generated
by a graphic engine. Therefore, in theory, there are infinite amount
of training data with desired view to train the model. However, in
our task, the training data are limited in both views and numbers,
which greatly adds the difficulty to generate image of different
views.

3 PROPOSED METHOD
3.1 Problem Definition
We first define the problem of generating multi-view images from a
single view input. Suppose we have a pre-defined set of view angles
V = {v1, · · · ,vi , · · · ,vn }, where vi corresponds to a specific view,
e.g.front or side view. An object captured from the viewvi is denoted
as Ivi . Given the source image Ivi , multi-view image generation is
to generate another image Ivj with a different viewvj ∈ V and j , i .
Specifically, the goal is to learn the distribution p(Ivj |Ivi ,vj ) from a
labeled dataset (Ivj ,1, Ivi ,1), . . . , (Ivj ,n , Ivi ,n ). Here, vj is specified
by users as an input to the model.
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Figure 3: The architecture of the proposed VariGANs consists of three modules: coarse image generator, fine image generator
and conditional discriminator. During training, a LR Image is firstly generated by the coarse image generator conditioned on
the target image, conditioned image and target view. Thefine image generatorwith skip connections is designed to generate the
HR image. Finally, the HR image and the conditioned image are concatenated as negative pairs and passed to the conditional
discriminator together with positive pairs (target image and condition image) to distinguish real and fake.

3.2 Variational GANs
Standard GANs will be applied to generate images of the desired
properties based on the input. This type of model learns a gen-
erative model G based on the distribution of the desired images,
sampling from which would provide new images. Different from
other generative models, GANs employ an extra discriminative
model D to supervise the generative learning process, instead of
purely optimizing G to best explain training data via Maximum
Likelihood Estimation.

The objective of GANs is formulated as:

min
θG

max
θD
EIvi ∼pdata(Ivi ), Ivj ∼pdata(Ivj |Ivi ,vj )

[logD(Ivi , Ivj )]+

Ez∼p(z)[log(1 − D(Ivi ,G(z, Ivi ,vj ))],

where a generative model G tries to generate real data Ivj given
noise z ∼ p(z) through minimizing its loss to fool an adversarial
discriminator D, meanwhile, D tries to maximize its discrimination
accuracy between real data and generated data.

However, because GANs are limited in capturing global appear-
ance, it is difficult to learn a generatorG to produce plausible images
with high resolution, correct contour and rich details. To address
this critical issue and generate more realistic images, the variational
GANs (VariGANs) proposed in this work combines the merits of
variation inference for modeling correct contours and adversarial
learning to fill realistic details. It decomposes the generator into
two components. One is for generating a coarse image through the
variational inference model V and the other is for generating the
final image with fine details based on the outcome fromV . Formally,
the objective of VariGANs is

min
θG

max
θD,θV

EIvi ∼pdata(Ivi ), Ivj ∼pdata(Ivj |Iv ,vj )
[logD(Ivi , Ivj )]+

Ez∼p(z)[log(1 − D(Ivi ,G(V (z, Ivi ,vj ), Ivi ,vj ))]. (1)

Here z is the random latent variable and V is the coarse image
generator. This objective can be optimized by maximizing the vari-
ational lower bound of V , maximizing the discrimination accuracy
of D, and minimizing the loss ofG against D. We will elaborate the
models of V , G and D in the following subsections.

3.3 Coarse Image Generation
Given an input image Ivi with the view of vi , target view vj , and
latent variable z, the coarse image generator V (Ivi , z,vj ) learns
the distribution p (̂Ivj |Ivi , z) which focuses on modeling the global
appearance. The parameters of the coarse image generator is de-
noted as θV . To alleviate difficulties of directly optimizing this
log-likelihood function and avoid the time-consuming sampling,
the variational Bayesian approach is applied to optimize the lower
bound of the log-likelihood logpθ (̂Ivj |Ivi ,vj ), as proposed in [12,
23]. Specifically, an auxiliary distribution qϕ (z |̂Ivj , Ivi ,vj ) is intro-
duced to approximate the true posterior pθV (z |̂Ivj , Ivi ,vj ).

The conditional log-likelihood of the coarse image generator V
is defined as

logpθV (̂Ivj |Ivi ,vj ) = L(̂Ivj , Ivi ,vj ;θ ,ϕ)+

KL
(
qϕ (z |̂Ivj , Ivi ,vj )| |pθ (z |̂Ivj , Ivi ,vj )

)
,

where the variational lower bound is

L(̂Ivj ,Ivi ,vj ;θ ,ϕ) = −KL
(
qϕ (z |̂Ivj , Ivi ,vj )| |pθ (z)

)
+ Eqϕ (z | Îvj , Ivi ,vj )

[logpθ (̂Ivj |Ivi ,vj , z)], (2)

where the first KL term in Eqn. (2) is a regularization term that
reduces the gap between the priorp(z) and the proposal distribution
qϕ (z |̂Ivj , Ivi ,vj ). The second term logpθV (̂Ivj |Ivi ,vj , z) is the log-
likelihood of samples and is usually measured by the reconstruction
loss, e.g., ℓ1 used in our model.



3.4 Fine Image Generation
After obtaining the low resolution image Îvj of the desired output
Ivj , the fine image generation module learns another generator
G that maps the low resolution image Îvj to the high resolution
image I∗vj conditioned on the input Ivi . The generator G is trained
to generate images that cannot be distinguished from “real” images
by an adversarial conditional discriminator, D, which is trained to
distinguish as well as possible the generator’s “fakes”. See Eqn. (1).

Since the multi-view image generator needs to not only fool the
discriminator but also be visually similar to the ground truth of the
target image with a different view, the ℓ1 loss is also added for the
generator. The ℓ1 loss is chosen because it alleviates over-smoothing
artifacts compared with ℓ2 loss.

After that, the GANs of fine image generation train the discrim-
inator D and the generatorG by alternatively maximizing LD in
Eqn. (3) and minimizing LG in Eqn. (4):

LD =E(Ivi , Ivj )∼pdata
[logD(Ivi , Ivj )]+

Ez∼p(z)[log(1 − D(Ivi ,G (̂Ivj (z), Ivi ,vj )))], (3)

LG =Ez∼p(z)[log(1 − D(Ivi ,G (̂Ivj (z), Ivi ,vj ]+

λ∥Ivj −G (̂Ivj (z), Ivi ,vj )∥1, (4)

where Îvj is the coarse image generated by V . The real images Ivi
and Ivj are from the true data distribution.

3.5 Network Architecture
The overall architecture of the proposed model in the training phase
is illustrated in Fig. 3. It consists of three modules: the coarse image
generator, the fine image generator and the conditional discrimina-
tor. During training, the target view image Ivj and the conditioned
image Ivi are passed through two Siamese-like encoders to learn
their representations respectively. By word embedding, the input
with desired view angle vj is transformed into a vector. The rep-
resentations of Ivi , Ivj and vj are combined to generate the latent
variable z. However, during testing, there is no target image Ivi and
the encoder for it. The latent variable z is randomly sampled and
combined with the representation of the condition image Ivi and
the target view vj to generate the target view LR image Îvj . After
that, Ivi and Îvj are sent to the fine image generator to generate
the HR image I∗vj . Similar to the coarse image generation module,
the fine image generation module also contains two Siamese-like
encoders and a decoder. Moreover, there are skip connections be-
tween mirrored layers in the encoder and decoder stacks. By the
channel concatenation of the HR image I∗vj and the condition image
Ivi , a conditional discriminator is adopted to distinguish whether
the generated image is real or fake.

Coarse Image Generator. There are several convolution layers
in the encoder of the coarse image generator to down sample the
input image to anMl × 1× 1 tensor. A fully-connected layer is then
topped to transform the tensor to an Ml -D representation. The
encoders for the target image and the condition image share the
weights. A word embedding layer is employed to embed the target
view into anMl -D vector. The representations of the target image,
the conditioned image and the view embedding are combined and

LR
Image

Condition
Image

HR
Image

Figure 4: Dual-path U-Net. There are skip connections be-
tween the mirrored layers in two encoders and a decoder.

transformed to anMl -D latent variable. Finally, the latent variable
together with the conditioned image representation and the view
embedding are passed through a series of de-convolutional layers
to generate aWLR ×WLR image.

Fine Image Generator with Skips. Similar to the coarse image
generation module, the fine image generator also contains two
Siamese-like encoders and a decoder. The encoder consists of sev-
eral convolutional layers to down-sample the image to aMh × 1× 1
tensor. Several de-convolutional layers are then used to up-sample
the bottleneck tensor toWHR ×WHR.

Since the mapping from low resolution image to high resolution
image can be seen as a conditional image translation problem, they
only differ in surface appearance, but both are rendered under
the same underlying structure. Therefore, the shape information
can be shared between the LR and HR images. Besides, the low-
level information of the conditioned image will also provide rich
guidance when translating the LR image to the HR image. It would
be desirable to shuttle these two kinds of information directly across
the net. Inspired by the work of “U-Net” [24] and image-to-image
translation [10], we add skip connections between the LR image
encoder and the HR image decoder, and between the conditioned
image encoder and the HR image decoder, simultaneously, which
are illustrated in Fig. 4. With these skip connections, the decoder
up-samples the encoded tensor to the high resolution image with
the target view by several de-convolution layers.

Conditional Discriminator. The generated high resolution image
I∗vj and the ground-truth target image Ivj are concatenated with
the conditioned image Ivi to form the negative pair and positive
pair, respectively. These two kinds of image pairs are passed to the
conditional discriminator and the fine image generator is trained
adversarially.

3.6 Implementation Details
For the coarse image generator, the encoder network contains 6
convolution layers followed by 1 fully-connected layer. The con-
volution layers have 64, 128, 256, 256, 256 and 1024 channels with
filter size of 5×5, 5×5, 5×5, 3×3, 3×3 and 4×4, respectively. The



fully-connected layer has 1024 neurons. Ml and WLR are set to
1024 and 64, respectively. The representations of the target image
and the condition image and the embedding of the target view
are concatenated and transformed to the latent variable by a fully-
connected layer with 1024 neurons. The decoder network consists
of 1 fully-connected layer with 256×8×8 neurons, followed by 6
de-convolution layers with 2×2 up-sampling, which have 256, 256,
256, 128, 64 and 3 channels with filter size of 3×3, 5×5, 5×5, 5×5,
5×5 and 5×5, respectively.

For the fine image generation module, the encoder network
contains 7 convolution layers with 64, 128, 256, 512, 512, 512, 512
channels, respectively.Mh is set to 512. The decoder network con-
sists of 7 de-convolution layers with 512, 512, 512, 256, 128, 64 and
3 channels, respectively. The filter size of encoder network and
decoder network is 4×4 and the stride is 2. The conditional discrim-
inator consists of 5 convolution layers, which have 64, 128, 256, 512
and 1 channel(s), respectively, with filer size of 4×4 and stride of 2,
2, 2, 1, 1, respectively.WHR is set to 128.

For training, the coarse image generator is first trained for 500
epochs. With the generated low resolution image and the condi-
tioned image, the fine image generator and the conditional dis-
criminator are then iteratively trained for another 500 epochs. All
networks are trained using ADAM solvers with batch size of 32 and
an initial learning rate of 0.0003.

4 EXPERIMENT
To verify the effectiveness of the proposed VariGANs model, exten-
sive quantitative and qualitative evaluations have been conducted.
In addition to the performance comparison with state-of-the-art
models, we do ablation studies to investigate the design and impor-
tant components of our proposed VariGANs.

4.1 Datasets and Evaluation Metrics
Datasets. Experiments are conducted on MVC [14] and Deep-

Fashion [15] datasets, which contain a huge number of clothing
images with different views. MVC1 contains 36,323 clothing items.
Most of them have 4 views, i.e., front, left side, right side and back
side. DeepFashion2 contains 8,697 clothing items with 4 views,
i.e.front, side (left or right), back and full body. Example images
from the two datasets are demonstrated in Fig. 5. We can see that
the view and scale variance of images from DeepFashion is much
larger than those in MVC. The total number of images in DeepFash-
ion is also smaller than MVC. The high variance and the limited
number of training samples bring great difficulties for multi-view
image generation on DeepFashion.

To give a consistent task specification of multi-view image gen-
eration on the two datasets, we define that the view set contains
the front, side and back view. Two generation goals are considered:
(1) to generate the side view and back view images conditioned
on the front view image; (2) to generate the front view and back
view images from side view image. These two scenarios are most
popular in real life. We split the MVC dataset into the training set
with 33,323 groups of images and the testing set with 3,000 groups
of images. Each group contains three views of clothing images.

1http://mvc-datasets.github.io
2http://mmlab.ie.cuhk.edu.hk/projects/DeepFashion.html

(a) MVC (b) DeepFashion

Figure 5: Examples ofmulti-view images fromMVC [14] and
DeepFashion [15], respectively.

The training set of DeepFashion dataset consists of 7,897 groups of
clothing images, and there are 800 groups of images in the testing
set.

EvaluationMetrics. In previous literature on image generation [10,
33, 34], the performance is usually evaluated by human subjects,
which is subjective and time-consuming. Instead of quantitative
evaluation by user study, we firstly measure a pixel-level dissimilar-
ity by Root Mean Square Error (RMSE) between a generated image
and a target image over the test set, since the ground-truth images
with target views are provided in the datasets. The smaller value of
RMSE indicates more similarity between the generated image and
target image. Besides, the Structural Similarity (SSIM) [28] is also
adopted to measure the similarity between the generated image
and ground truth image. It is widely used in many other image
generation works, e.g., [19, 33]. In essence, the similarity measures
the quality of the result. It can faithfully reflect the similarity of
two images regardless of the light condition or small pose variance,
which models the perceived changes in the structural information
of the images.

The SSIM between two images Ix and Iy is defined as:

SSIM(Ix , Iy ) =
(2µx µy + c1)(2σxy + c2)

(µ2x + µ
2
y + c1)(σ

2
x + σ

2
y + c2)

,

where x and y are the generated image and the ground-truth image,
respectively. µ and σ are the average and variance of the image.
c1 and c2 are two variables to stabilize the division, which are
determined by the dynamic range of the images.

Another popular evaluation metric which is widely adopted to
evaluate generative models is the Inception Score [25]. It expects
the model to generate images contain meaningful objects. Moreover,
the generated images should have high diversity. However, in our
problem setting, the diversity of the target image is not the main
concern, since the generated image and the condition image should
only differs in the view point.

4.2 Experimental Results and Analysis
We compare the performance with two state-of-the-art image gener-
ationmodels: Conditional VAE (cVAE) [26] andConditional GANs (cGANs) [16]
on MVC and DeepFashion datasets. The cVAE has a similar archi-
tecture with the coarse image generator of our VariGANs. It has one



(a) Input (b) cVAE (c) cGANs (d) VariGANs (e) GT

Figure 6: Example results of the proposed method and the state-of-the-arts approaches. (a) are input images with front view,
(b) and (c) are the results generated by cVAE and cGANs respectively. (d) demonstrate the coarse and fine images generated by
our VariGANs.

(a) Input Images (b) Coarse Images (c) Fine Images (d) GT Images (e) Coarse Images (f) Fine Images (g) GT Images

Figure 7: Multi-view images generated by our VAriGANs. The first and last two rows demonstrate example results generated
from MVC and DeepFashion datasets, respectively. The images are generated from coarse to fine conditioned on the input
images of different views.

Table 1: Performance comparison of the proposed method
with the state-of-the-arts methods.

Methods RMSE ↓ SSIM ↑

MVC DF MVC DF
cVAE [26] 0.19 ± .05 0.22 ± .05 0.66 ± .09 0.58 ± .08
cGANs [16] 0.17 ± .04 0.20 ± .05 0.69 ± .10 0.59 ± .08
VariGANs 0.14 ± .04 0.18 ± .05 0.70 ± .10 0.62 ± .08

more convolution layer in the encoder and onemore de-convolution
layer in the decoder, which directly generate the HR Image. The
cGANs have one encoder network to encode the conditioned image
and one word embedding layer to transform the view to the vec-
tor. The encoded conditioned image and the view embedding are
concatenated and fed into the decoder to generate the HR image.

The performance comparison is listed in Table 1. We can see that
cVAE has the worst performance on both datasets, while cGANs
improves the performance compared to cVAE. Our proposed Vari-
GANs outperform these baselines on both datasets, which indicate



(a) (b) (c) (d) (e) (f)

Figure 8: Visualization of feature maps in the first two convolution layers ((b) & (c)) in the encoder of coarse image generation
and the last two de-convolution layers ((d) & (e)) in the decoder of coarse image generation. Ourmodel learns how to transform
the image into the desired view. (a) and (f) are the input image and the generated LR image, respectively.

(a) (b) (c) (d) (e) (f) (g)

Figure 9: Generated images with different variants of our proposed method. (b), (c), (d) and (e) are the results of the model
without V , Dual-path U-Net, ℓ1 loss and conditional discriminator, respectively. (f) shows the results generated by VariGANs.
(a) and (g) are the input images and the ground truth image.

that the proposed method is able to generate more realistic images
conditioned on the single-view image and the target view.

Some representative examples generated by the state-of-the-arts
methods and the proposed method are illustrated in Fig. 6. It can be
seen that the samples generated by cVAE are blurry, and the color
is not correct. However, it correctly draws the general shape of
the person and the clothes in the side view. The images generated
by cGANs are more realistic with more details, but present severe
artifacts. Some of the generated images look unrealistic, such as the
example in the second row. The low resolution image generated
by the coarse image generator of our proposed VariGANs presents
better shape and contour than cVAE, beneficial from a more reason-
able target setting for this phase (i.e. only generating LR images).
Besides, the generated LR image looks more natural than those
generated by other baselines, in terms of the view point, shape and
contour. Finally, the fine image generator fills correct color and
adds richer and realistic texture to the LR image.

More examples generated by our VariGANs associated with
coarse, fine and ground truth images are demonstrated in Fig. 7.
The first two rows are from MVC dataset, while the others are from
DeepFashion dataset. The first and third rows show the generated
side and back view images from the front view. Given the side view
image, the second and fourth rows demonstrate the generated front
and back view images. From Fig. 7, we can see that the generated
coarse images have the right view based on the conditioned image.
The details are reasonably added to the coarse images with the
fine image generation module. The results also demonstrate that
the generated images need not be the same as the ground-truth
image. There may be pose variance in the generated images like
the generated front view image of the second example. Note that
the proposed model focuses on clothes generation and does not

Figure 10: Images generated fromdifferent z and same condi-
tions. The images in first column are condition images with
front view, and the rest columns contains three different im-
ages generated from different z with side view.

consider humans in the image. Besides, some blocky artifacts can
be observed in some examples, In the future, we will explore how
to remove such artifacts by adopting more complicated models
to generate sharper details. Nevertheless, current results present
sufficient details about novel views for users.

Generation Results of Different z. For the coarse image generator,
we aim to generate target view images with reasonable variance and
our model indeed performs this well. Diverse results which capture
shape and coarse details with large probability are generated. We
present two groups of examples sampled from different z but the
same condition image and target view in in Fig. 10. The images
in first column are condition images with front view, and the rest
columns contains three different images generated from different z
with side view.



Visualization of the Feature Maps. To provide a deeper insight to
the mechanism of the multi-view image generation in the proposed
model, we also visualize the feature maps of the first two convo-
lution layers in the encoder of coarse image generation and their
corresponding de-convolution layers in the decoder (i.e.the last
two), as shown in Fig. 8. The visualization demonstrates that the
model learns how to change the view of different parts of the image.
From the visualization results, we can observe that the generated
feature maps effectively capture the transition of view angles and
the counterparts from another view.

4.3 Ablation Study
In this subsection, we analyze the effectiveness of the components
in our proposed model to further validate the design of our model.

The Variational Inference (w/o V).. To investigate the role of vari-
ational inference in our proposed VariGANs, we first conduct the
experiment which replaces the variational inference in coarse im-
age generator with GANs. In this implementation of our model, the
LR image is firstly generated by GANs conditioned on the input
single-view image and the target view, and then used by fine image
generator to generate the HR image. This variant of our model is
similar to StackGAN [34], which synthesizes images from textual
description in two stages.

The Dual-path U-Net (w/o U-Net). To verify the effectiveness of
the Dual-path U-Net, we implement the proposed model without
the skip connections. The low resolution image and the conditioned
image go through the siamese encoders in the fine image generation
module until a bottle-neck and the outputs of the encoders are
concatenated and fed into the decoder networks.

Reconstruction Loss (w/o ℓ1). The traditional reconstruction loss,
i.e.ℓ1 loss is important in our task to generate plausible images,
which is adopted in many previous research. To prove that we also
conduct experiments without ℓ1 loss.

The Conditional Discriminator (w/o cGANs). Finally, we train
our model without the conditional discriminator in the fine image
generation, i.e.only the generated images and ground truth images
are used to train the discriminator. In this way, the discriminator
is designed only to distinguish the image is real or generated, not
considering the condition image.

The effect of individual components of VariGANs on MVC and
DeepFashion is listed in Table 2. It can be seen that the performance
is dropped after removing or replacing any component of our model.
As shown in the first line in Table 2, stacking two GANs together
decreases the performance, since the generated LR images do not
have good structure, and therefore make the HR images generated
based on the LR images worse. As shown in the second row of
Table 2, without the skip connections, both the performances on
RMSE and SSIM of the generated images drop dramatically com-
paring other components, indicating the importance of the lower
features of both the conditioned image and the LR image. The direct
connections to the low level feature of the LR image provide strong
shape and view information, and the connections to the low level
feature of the conditioned image give clues about the color and
details that need displayed in the generated image. Since the ℓ1 loss

Table 2: The effect of individual components of VariGANs.

Methods RMSE ↓ SSIM ↑

MVC DF MVC DF
w/o V 0.18 ± .04 0.22 ± .05 0.69 ± .11 0.59 ± .07
w/o U-Net 0.25 ± .03 0.32 ± .05 0.56 ± .08 0.53 ± .07
w/o ℓ1 0.22 ± .04 0.25 ± .05 0.58 ± .09 0.49 ± .06
w/o cDisc 0.19 ± .04 0.23 ± .04 0.66 ± .09 0.55 ± .09
VariGANs 0.14 ± .04 0.18 ± .05 0.70 ± .10 0.62 ± .08

provides strong supervision to generate the image with complete
structure and correct view, removing it will also greatly decrease
the performance of the model as show in the third line in Table 2.
Not concatenating the generated images and the target image with
condition image slightly decrease the performance of our model
comparing to other components as reported in the forth line in
Table 2. It indicates that although the LR image generated by the
coarse image generation module already has good structure and
correct target view, the fine image generation module can further
refine it and generate more reasonable results by feeding the gen-
erated image and the input image with the condition image to the
discriminator.

The images generated by different variants of our VariGANs
are illustrated in Fig. 9. Conditioned on the LR image generated
by GANs, the result in Fig. 9(b) displays relative good shape and
right texture. However, some parts are missing in the generated
image, i.e., the left hand. The result without the dual-path U-Net
has incomplete areas and unnatural colors, as shown in Fig. 9(c).
Without ℓ1 loss, the detailed texture is not well learned, such as the
upper part of the cloth in Fig. 9(d). VariGANs without conditional
discriminator generate comparative result (Fig. 9(e)) as VariGANs
(Fig. 9(f)).

5 CONCLUSION
In this paper, we propose a Variational Generative Adversarial Net-
works (VariGANs) for synthesizing realistic clothing images with
different views as input image. The proposed method enhances
the GANs with variational inference, which generate image from
coarse to fine. Specifically, the coarse image generator first pro-
duces the basic shape of the object with the target view. The fine
image generator then fills the details into the coarse image and
corrects the defects. Comprehensive experiments demonstrate that
our model can generate more plausible results than the state-of-
the-arts methods. The ablation studies also verify the importance
of each component in the proposed VariGANs.
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