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ABSTRACT

Deep learning methods have been successfully applied to fashion
retrieval. However, the latent meaning of learned feature vectors
hinders the explanation of retrieval results and integration of user
feedback. Fortunately, there are many online shopping websites or-
ganizing fashion items into hierarchical structures based on product
taxonomy and domain knowledge. Such structures help to reveal
how human perceive the relatedness among fashion products. Nev-
ertheless, incorporating structural knowledge for deep learning
remains a challenging problem. This paper presents techniques for
organizing and utilizing the fashion hierarchies in deep learning to
facilitate the reasoning of search results and user intent.

The novelty of our work originates from the development of an
EI (Exclusive & Independent) tree that can cooperate with deep
models for end-to-end multimodal learning. EI tree organizes the
fashion concepts into multiple semantic levels and augments the
tree structure with exclusive as well as independent constraints. It
describes the different relationships among sibling concepts and
guides the end-to-end learning of multi-level fashion semantics.
From EI tree, we learn an explicit hierarchical similarity function
to characterize the semantic similarities among fashion products.
It facilitates the interpretable retrieval scheme that can integrate
the concept-level feedback. Experiment results on two large fash-
ion datasets show that the proposed approach can characterize
the semantic similarities among fashion items accurately and cap-
ture user’s search intent precisely, leading to more accurate search
results as compared to the state-of-the-art methods.
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1 INTRODUCTION

As evidenced by Black Friday’s record-high of $5.03 billion online
sales in U.S. and Alibaba’s $25 billion Singles Day sales in 2017, the
modern e-commerce traffic volume is growing fast. At the same
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Figure 1: An illustration of interpretable fashion retrieval.
An EI tree helps to interpret the semantics of fashion query
for searching while user can give feedback at concept level.
The green dash lines denote independent relations among
siblings while brown solid lines denote exclusive relations.

time, consumers have become very exigent. For instance, they may
have in mind a specific fashion item in a particular color or style,
and want to find it online without much effort [28]. Therefore,
making the retrieval procedure explainable as in Figure 1 and being
able to leverage user feedback become essential requirements.

Fashion search by text has been widely used (e.g. search engines,
shopping apps) to fulfill such requirements [32], owing to its natural
way of expression and flexibility of description [45]. However, such
freedom also leads to rather diverse textual descriptions of fashion
items, making the retrieval reults unsatisfactory. More importantly,
there are many visual traits of fashion items that are not easily
translated into words. Meanwhile, with the growing volume of
online images, Content Based Image Retrieval (CBIR) [49] comes
into play and allows users to simply upload a query image. Items are
then retrieved based on their visual similarities to the query. A major
challenge to such methods is the well-known semantic gap between
the low-level visual cues and the high-level semantic features (e.g.,
neckline, sleeve length) that interpret users’ search intent. Therefore,
considering the strengths and weaknesses of both methods, it is
natural to combine the textual and image modalities. Indeed, many
efforts linking image and text have shown promising results and
can be applied to fashion retrieval, such as the visual-semantic
embedding [22] and multimodal correlation learning [4]. Typically,
such models take in image-text pairs and optimize a similarity based
or distance based loss function (e.g., CCA loss, contrastive ranking
loss) to discover a shared feature space [26]. However, the learned
feature vectors are usually opaque, making it difficult to explain the
retrieved results, incorporate user feedback and further improve
the search performance. Thus, a major research question is: can we
develop a solution that takes advantage of multi-modalities and is
able to perform interpretable fashion retrieval?

Fortunately, the abundant resources of taxonomies for fashion
items in online shops and the domain specific knowledge shed
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some light on this question. Many general e-commerce sites (e.g.
Amazon and Taobao) as well as fashion specific sites (e.g. esos.com
and polyvore.com) have similar ways of organizing fashion products.
These organization schemes describe the taxonomy of fashion items
and give clues to human perception of fashion product similarity.
For example, as shown in Figure 1, upper-garments associate with
concepts like neckline and sleeve length, which are absent in bottom-
garments such as skirts or pants. Such structure encodes fashion
knowledge by imposing certain concepts conditioning on others.
As a result, learning a tree structure of concept dependency has po-
tential to achieve better performance [20, 31, 50]. More importantly,
there exists many exclusive and independent relationships among
these fashion concepts that can be leveraged to boost performance
[43]. For instance, a single item may only belong to one of the
category concepts such as coat and shirt, which are mutually exclu-
sive. Meanwhile, concepts like sleeve length and neckline seem to be
independent of each other. Therefore, a tree structure augmented
with such constraints becomes a viable way to integrate human
perception to the modeling process. Note that it differs from the
And-Or graph [5] which models logical AND or OR relationships
between siblings. EI tree models the exclusive (choose only one) and
independent (choose freely) relationships and guide the end-to-end
learning of multi-level fashion semantics.

Figure 2 presents an overview of the proposed framework, which
is composed of two parts. In the offline part, we first map the cloth-
ing images and text descriptions into a joint visual semantic em-
bedding space. We then apply the EI tree to guide the learning
procedure and obtain meaningful representations where each di-
mension corresponds to a concrete fashion concept. Meanwhile, the
El loss is propagated back through the network to update feature
learning. After the end-to-end training, we leverage the learned EI
tree weights to localize fashion concepts, which provides a straight-
forward way to visualize the validity of EI tree. In the online part,
a given query image or text description is first processed by the
EI model to generate its vector representation. Similar items are
then retrieved from the collection according to their similarities
to the query. Supported by the learned representation and explicit
hierarchical similarity function, we enable a direct channel to help
user express search intent through providing feedback on fashion
concepts. It offers a clearer semantic description of search intent.
For example, by viewing the searched results, users can specify
that they prefer ‘short sleeve, rather than long sleeve’. Based on the
feedback, the model can manipulate the query representation by
assigning a 1 to the feature dimension corresponding to short sleeve
while setting that of long sleeve to 0.

The main contributions of this paper are as follows:

e We propose an EI Tree to guide the end-to-end deep learn-
ing. It bridges the gap between opaque deep features and
meaningful fashion concepts.

e We learn an explicit hierarchical similarity function to ac-
curately characterize the semantic affinities among fashion
items. A direct feedback mechanism is then proposed to
collect user feedback and capture the search intent precisely.

e We design an interpretable multimodal fashion retrieval
scheme based on EI tree and demonstrate its effectiveness in
facilitating explainability with superior search performance
over the state-of-the-art approaches.
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2 RELATED WORK

2.1 Fashion retrieval

Interest in fashion retrieval has increased recently. While text re-
trieval looks for repetitions of query words in text descriptions or
product titles, newer latent semantic models [2, 34] use more pow-
erful distributed representations [11]. On the other hand, deep con-
volutional networks have been used to learn visual representations
and achieved superior performance [24] in image classification.
However, the generated features are largely uninterpretable.

As mid-level representations that describe semantic properties,
semantic attributes or concepts [27] have been applied effectively
to object categorization [39] and fine-grained recognition [25]. In-
spired by these results, researchers in fashion domain have an-
notated clothes with semantic attributes [3, 19, 30] (e.g., material,
pattern) as intermediate representations or supervisory signals to
bridge the semantic gap. For instance, [3] automatically generated a
list of nameable attributes for clothing on human body. [40] learned
visually relevant semantic subspaces using a multiquery triplet
network. [30] proposed FashionNet to jointly predict attributes and
landmarks of the clothing image. As another direction, attributes
conditioned on object parts have achieved good performance in
fine-grained recognition [29, 46, 51]. However, these methods are
limited by their ability to accurately parse the human body in im-
ages. In contrast, we propose to integrate domain knowledge for
more effective learning of fashion attributes.

2.2 Attribute Manipulation

Regarding fashion query formulation and manipulation, Whittle-
Search [23] allows users to upload a query image with text descrip-
tions. However, only the relative attributes were considered. More
recently, Generative Visual Manipulation (GVM) model [55] was
proposed to directly edit image and generate new query image
using GAN [12] for search. Generally, the retrieval results relied
highly on the quality of a generated image. More importantly, GVM
is limited in depicting certain concepts, such as style or pattern.
Instead of editing the image, AMNet [52] resorts to communicate
additional concept description to the search engine. Memory net-
work was leveraged to manipulate image representation at the
concept level. However, the quality of extracted prototype con-
cept representations largely affected the manipulation results. Also,
the relationships between concepts were largely ignored, which
has been demonstrated to be important to model [33, 48]. In our
work, as the semantics and relationships are captured by EI tree, we
can explicitly modify the corresponding dimension in the learned
concept vector to encode user feedback on attributes.

2.3 Semantic Hierarchy

Taxonomy or ontology based semantic hierarchies such as WordNet
[9], ImageNet [7], and LSCOM [35] have been successfully applied
for knowledge inferencing. Particularly, the organization of seman-
tic concepts from general to specific provides reasoning capability
to boost recognition and retrieval [6, 8, 10]. Most recent works
exploiting semantic hierarchy focused on designing new similarity
metrics that embeds semantics and hierarchical information. For
example, [8] proposed to find visually nearest neighbors for two
images and then compute their semantic distance based on the con-
cepts of their neighbors. Meanwhile, [6] developed a hierarchical bi-
linear similarity function directly and achieved the state-of-the-art
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Figure 2: The interpretable multimodal fashion retrieval framework consisting of offline training and online retrieval.

performance of image retrieval on ImageNet. Toward the direction
of refinement, [41] proposed to associate separated visual similar-
ity metrics for every concept in a hierarchy, and [49] augmented
semantic hierarchy with a pool of attributes. Different from these
existing works, our work builds fashion domain specific hierarchy
— EI tree, which not only helps to guide the end-to-end learning
of multi-level fashion semantics, but also modifies the similarity
metric as the proximity of two surrogate-EI trees.

3 THE PROPOSED FRAMEWORK

The proposed framework as shown in Figure 2 consists of an offline
model training part and an online retrieval part. In offline, EI tree
helps to bridge the gap between opaque deep features and inter-
pretable fashion concepts. It guides the model to obtain meaningful
representations. Differing from the implicit feature vectors learned
by existing deep models, our representations have the following
traits: 1) each dimension corresponds to a concrete fashion concept,
which enables the interpretability of search queries and results; 2)
the representation can be recovered to a surrogate-EI tree where
concept relations are captured; and 3) the spatial regions for each
concept can be identified via the learned EI weights. In online re-
trieval, an explicit hierarchical similarity function is learned to
compute the semantic similarities among fashion items. Based on it,
an interpretable multimodal fashion retrieval scheme is proposed
to facilitate concept-level user feedback. This section describes the
major components of the offline learning part.

3.1 EIlTree

Deep models have shown superior performance in extracting fea-
tures for various applications. However, the opaqueness of these fea-
ture vectors hinders the explainability of results. To map the implicit
features to interpretable concepts, we may apply traditional multi-
class or multi-label classification techniques. Suppose we have con-
cepts C = {up_cloth, neckline, sleeve, color, bottom_cloth, rise, fry},
multi-class classification associates an item with a single concept
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¢ € C such as {color}. As only one concept label can be gener-
ated, it works like assuming exclusive relations among all concepts.
In contrast, multi-label classification associates a finite set of la-
bels C’ c C such as {up_cloth, bottom_cloth, color}. Each concept
corresponds to a binary classifier, which is similar to assuming
independent relations among concepts. In fashion domain, neither
one of these interpretation is complete. For example, an upper
body cloth may belong only to the up_cloth category but not the
bottom_cloth. It thus does not have details such as rise or fry. Also,
details such as sleeve length and color are independent of each other.
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Figure 3: Part of an EI tree for fashion concepts.

To capture different relationships among fashion concepts, we
propose the EI tree as depicted in Figure 3 as follows:

Definition 3.1. Exclusive & Independent Tree is a hierarchical
tree structure 7 = {C, &g, &1}, consisting of a set of concept nodes
C = {c}, a set of exclusive concept-concept relations Eg (red solid
line among siblings) and a set of independent concept-concept
relations &y (green dashed line among siblings).
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Generally speaking, EI tree organizes semantic concepts from
general to specific, where exclusive and independent relationships
are integrated among siblings. In general, sibling concepts involv-
ing product categories usually share exclusive relationships, while
sibling concepts involving attributes are often characterized by
independent relationships. To generate an EI tree for fashion con-
cepts, we crawled product hierarchies from 40 e-commerce sites
such as amazon.com, asos.com and polyvore.com. We next applied
the Bayesian Decision approach developed in [38] to obtain an
unified hierarchy, and then extracted exclusive and independent
relationships manually by a fashion expert. Finally, we obtained an
EI tree with 334 concept nodes (excluding the root) organized into
six levels. Figure 3 shows part of the resulting fashion EI tree with
top level concepts such as up, bottom, color etc.

In next subsections, we will elaborate the application of EI tree
in end-to end learning and concept localization after introducing
the image and text pipelines.

3.2 Representation Learning with EI Tree

3.2.1 Image & Text Pipelines. Following numerous prior works
showing the effectiveness of CNN in extracting image features, we
use ResNet-50 [14] pre-trained on ImageNet as the base networks
before conducting fine-tuning for visual feature learning. Given an
input image I of size 224 X 224, a forward pass of a base network
produces a feature vector f; € R2%48, The forward pass process of
ResNet-50 is a non-linear function which we denote as Fresnes(+).
As shown in Figure 2, the pipeline takes an anchor image I, and a
negative image I, as input, and generates the feature vectors for
the two images as:

fIa = ﬂesnet(la)v fIn = 7:resnet(ln) .

To establish the inter-modal relationships, we represent the
words in text descriptions in the same embedding space that the
images occupy. The simplest approach might be to project every
individual word directly into this embedding space. However, it
does not consider any ordering and word context information. A
possible extension might be to integrate dependency tree relations
among these words. However, it requires the use of Dependency
Tree Parsers trained on text corpora unrelated to fashion domain.
Encouraged by the good performance in [17, 54], we use Bidi-
rectional Long Short-Term Memory units (BLSTM) to compute
the text representations. The BLSTM takes a sequence of T words
S = {x1,x2,- - ,x7} and transforms the sequence into R20%8 yector
space. Using the index t = 1,- - - , T to denote the position of a word
in a sentence, the hidden state of basic LSTM unit is calculated by:

1)

where x; is the 1-of-V representation of word x;, W,,,;, is the word
embedding matrix initialized with word2vec [34] weights learned
from text descriptions and set to be trainable for later training stage.
BLSTM consists of two independent streams of LSTM processing,

- -
ht = LSTM(WembX[, htfl),

>
one moving from left to right h; and the other from right to left
P

h;. We use element-wise sum to combine the two direction outputs

—

h; = h; + h;. The final text representation fg is generated via
max-pooling over {h|t = 1---T}. We denote the BLSTM forward
pass process as a non-linear function %y, (-). The dual path text
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pipline takes an anchor text S, and a negative text Sy, as input, and
generates feature vectors for them accordingly:

fs, = Foistm(Sa), fs, = Forstm(Sn) -

As evidenced by the superior performance in linking textual and
image modalities [18, 36, 42], we adopt the bi-directional ranking
loss as a regularizer to integrate the two modalities for boosting
multimodal fashion retrieval. By denoting the cosine similarity
measure as cos(-, -), the bi-directional ranking loss is expressed as:

image anchor
N

1
Lrank = 7 > (max{0,m - (cos(fy,. fs,) - cos(fr,. fs,))}
a=1

+max{0,m — (cos(fs,.fr,) — cos(fs,, £1,))}),

()

text anchor
where m is a margin and N is the number of training instances.
As we have mapped image and text features into the same vector
space and have assumed similarity relations between them, we
naturally sum up the feature representations for the item as:

f= f]a +f5a,

®)
which also showed better performance in preliminary experiments.

3.2.2 Interpretation of El Tree. During the end-to-end model
training procedure, EI tree is used to map the implicit deep features
f to explicit fashion concept probability vector p. Each concept is
traced from the root to itself along the EI tree and a probability
is generated based on the tracing path, which mimics the general
to specific recognition procedure, e.g., high level concepts such
as bottom_cloth will have larger probability than lower ones such
as trouser fry. A high probability on bottom_cloth indicates low
probabilities of its exclusive siblings such as up cloth.

f

material color

rise fry
Figure 4: An illustration of the EI tree converter calculation.
Formally, suppose ¢y — ¢, is the semantic path to concept cp,

and Wg; € R2048XIC| g the EI weight matrix (co denotes the root),
the probability of concept ¢y, is:

plenl co = cn £, WET) =
plet] co, £, WEgr) - peal c1, £, WEgr) - - - plen| cn-1,f, WEgr),

which can be viewed as a sequence of steps along the path. Note
that there are two kinds of steps as in Figure 4: the green dashed line
denotes the independent step I¢,_,¢,, € Er while the brown solid
line denotes the exclusive step l¢,_,c, € Eg. We keep exclusive
siblings of each node as ES,,, . Thus, the probability of each step is:

exp(fT - Wgj-cn)
YkeESey exp(fl - Wgp-ci)

lc‘nﬂcn € 8}3
plenl cn1,f, WEgp) =

U(fT -WEr - ¢n) leporen €61
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where ¢, denotes the one hot vector for node ¢;, o(-) denotes the
sigmoid function.
For example, for the EI tree in Figure 4, the probability of neckline:

p(neckline|root — neckline,f, Wgy) =

exp(fTWge
il H up) 'O'(fTWEICneckline)~

exp(fT Wereup) + exp(fT WErcporrom)

The process is intuitive: a softmax constraint is put among the
up_cloth and bottom_cloth category, forcing the model to choose
only one of them; the independent siblings material and color do
not affect this choice. Also, after choosing the up_cloth category,
the neckline and sleeve are decided independently.

To fulfill the whole training procedure, we define a loss function
Lgy for the EI converter. Suppose the ‘true’ label vector of concepts
is y, the EI loss resumes the cross-entropy loss for N samples as:

N
1
Lpr=-v ;[yalog@a) +-ylogi-p)l  (4)
To sum up, we integrate the EI tree enhanced cross-entropy loss and
bi-directional ranking loss together via a weighted combination.

The bi-directional ranking loss is cast as a regularizer:

L=Lgr+ALygnks %)

where A is the weight to adjust the proportion of regularization.
We optimize Equation 5 using the Adaptive Moment Estimation
(Adam) [21], which adapts the learning rate for each parameter by
performing smaller updates for the frequent parameters and larger
updates for the infrequent parameters.

3.3 Concept Localization with EI Tree

The learned concept weight matrix Wy can be used to localize con-
cept regions in fashion images, which enables explainable concept
predictions. Each column of Wgy is a weight vector for the corre-
sponding concept. Similar to [13, 53], we use upsampled concept
activation map to localize the image regions that are most relevant
to the particular concept, which provides a direct way to validate
the multi-level semantics in EI tree. More detailed results will be
shown in Subsection 5.4.

4 INTERPRETABLE FASHION RETRIEVAL

We now describe the details of our proposed fashion retrieval
scheme. An explicit hierarchical similarity function is learned to
characterize fashion item proximity. Concept manipulation is also
supported, which facilitates interactive retrieval.

4.1 Explicit Similarity Measure

Through the end-to-end neural network introduced above, we can
generate a representation of a fashion item as v = [p, f] , where p
refers to the concept probability vector learned in subsection 3.2.2,
f refers to the embedding vector as in Equation 3, and [-] denotes
vector concatenation. Specifically, since the EI tree structure is pre-
defined, a hierarchical tree representation of p can be recovered—
each concept corresponds to a node in the tree. Therefore, we
formulate an explicit hierarchical similarity function to characterize
fashion item proximity by aggregating their local proximity among
the fashion concepts.
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Formally, we define the explicit distance between two items as:

d(vi.v;) = (v = v))TD(v; - v)). ©)
where D is a positive semi-definite diagonal matrix. In general, we
need to ensure that the items with similar styles to be close and
items with rather different fashion concepts to be separated with a
large margin. Thus, for each item i, we require its distance to its
K-nearest neighbors to be small, and the distance should be smaller
than that between i and any other item [ which is rather different
to i. We denote i ~ j as such a neighborhood. We can have a set of
training triplets as 7 = {(i, j,I) : i ~ j,i + l}. Therefore, the metric
learning objective can be formulated as follows:

Z &iji
(i,j,1)eT
\/(i,j, l) € T, gljl Z 0,

d*(vi,v) — d*(vi,vj) > 1- &y,
Dua >20and Dy, =0if a#b,

mingnize Z dz(Vi,Vj) +p
i~j

subject to

where p1 > 0 is a regularization constant. The problem can be solved
rather efficiently by employing the LMNN solver [44] modified with
the above sampled triplets 7~ and a diagonal matrix requirement.

4.2 Integration of User Feedback

Based on the meaningful representation p and explicit similarity
function as in Equation 6, user feedback at concept-level can be
easily incorporated to achieve interpretable fashion retrieval. In
particular, we allow a user to give “yes”/“no” feedback on fashion
concepts to state which concepts are in or not in her search intent.
Suppose we are at the ¢-th feedback iteration. The system records
the “yes” concepts as R; and the “no” concepts as R;. Therefore,
the item representation p can be updated as:

1 c e Ry,
Ve € C, pyyqlel =140 ceR;, 8)
p;lc] others.

The p; 4 is then integrated into v;,1 to form a new query. The
corresponding dimensions in D for concepts in R; and their parent
nodes can be increased to emphasize the user intent.

5 EXPERIMENTS

In this section, we systematically evaluate the proposed method,
termed as EITree, in multimodal fashion retrieval. The experiments
are carried out to answer the research questions as follows. RQ1:
Can the proposed EI tree structure help deep models to learn in-
terpretable representations and achieve explainable results? RQ2:
Does the EITree method improve the retrieval performance? What
are the key reasons behind? RQ3: Does the EITree method manage
to integrate user feedback to accurately infer search intent and
further boost search performance?

5.1 Experimental Setup

5.1.1 Datasets. Although there exist several clothing datasets
[3, 19, 29, 30, 46], the majority of these datasets only contain a
limited number of images or lack attribute concept annotations.
In this work, we initially crawled 200 clothing categories from
Amazon, resulting in 1.66 million instances. After filtering based
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on the quality of text and product images, each instance now has
meaningful textual information, visual image and product category
path. We then sent all the images to a commercial tagging tool!
and only kept those instances where all tagging scores are above
the average of each tag. Through further manual correction and
selective validation, we obtained the AMAZON dataset with 489K
instances and over 95% validation accuracy. Similarly, for the DARN
dataset [16] which has no product category path (thus no results
for the prodTree method in Figure 5 and 6) and the texts of which
are product description frames from Taobao, we re-processed it by
tagging the images using the tool. Finally, we obtained the DARN
dataset with 100K instances and over 93% validation accuracy.

5.1.2  Comparing Methods. We compare with the following four
representative solutions, including two popular image based meth-
ods and two cross-modal approaches. a) Vebay [47] performs end-
to-end visual search in ebay. The product categories are separated
from other attributes during the training procedure. b) AMNet
[52] retrieves image and manipulates image representation at the
attribute level. c) DSP [42] learns joint embeddings of images and
texts using a two-branch neural network for image-to-text and
text-to-image retrieval. d) prodTree is a variant of our framework
by replacing EI tree with a product tree (constructed by product
category path). Different from EI tree, the product tree encodes only
exclusive relationship of concepts. Thus, it organizes cloth category
concepts into a tree and other concepts in a flat organization. It
serves to verify the contribution of EI tree when the same deep
model and learning procedure are employed. To analyze the effect
of information modalities, we also compared with another two vari-
ations of our method: e) txtEI which only uses text descriptions
and f) imgEI which only uses the product images.

5.1.3  Training Setups. For product images, we trained a Multi-
Box model [37] to detect and crop clothing items. For text descrip-
tions of products, we pre-processed all the sentences with Word-
Net’s lemmatizer [1] and removed stop words. We then applied
word2vec [34] on text descriptions to learn the embedding weights
for each word. Regarding the base network for visual modality,
we chose ResNet-50 with pretrained weights on ImageNet for our
method as well as comparing methods. For the proposed EI tree
methods, we set the margin m = 1.0 in Equation 2, and the weight
A = 0.01 in Equation 5. The learning rate of Adam optimizer was
initialized to 0.001. The batch size was set to 16.

5.1.4  Evaluation Protocols. In the fashion concept prediction
task, we grouped fashion concepts into several groups following
[30] and evaluated the performance within each group. We em-
ployed the top-1 accuracy score as our metric. It was obtained by
ranking the concept classification scores within each group and
determined how many concepts have been predicted accurately.
To further evaluate the performance of each concept, we treated
the prediction of each concept as binary classification. Finally, we
adopted AP (Area under precision and recall curve) for evaluation.

Regarding the automatic fashion retrieval task, building a repre-
sentative query sets with corresponding ground truth is essential
for evaluation. We first divided the items with similar concepts
into groups. We then manually filtered items within each group to

!https://www.visenze.com/solutions-overview
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ensure that items within the same group are in the same style. For
ease of manual correction, we randomly sampled 50,000 items as
our retrieval database to arrive at about 2,000 queries with ground
truth answers. Following numerous retrieval works, Recall@K was
adopted for evaluation.

To test whether the EITree method can handle user feedback
and further boost search performance, we performed simulation of
interactive search in the following way: we extend the image groups
to contain images in the similar style but with certain different
attributes. We then use the difference of items’ attribute concepts
as concept feedback. For example, in a group with two items, a red
dress and a blue dress in the same style, we can use the one with red
attribute as query and the blue one as the ground truth answer. We
report the results for retrieval after adding ‘—red, +blue’ as attribute
concept feedback. To evaluate the performance extensively, for each
query, we conducted two feedback iterations with two attribute
concept feedback per iteration.

5.2 Evaluations of Concept Prediction (RQ1)
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Figure 5: Performance of fashion concept prediction (RQ1).

Figure 5 shows the fashion concept prediction results on both
datasets. Due to space limitation, only the top-1 accuracy scores of
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five hand-picked representative groups and the overall performance
are shown. The key observations are as follows:

1) Our ElTree method achieves the best performance. Notably,
compared to the pure image-based methods Vebay and AMNet,
EITree performs significantly better for concepts that exhibit rela-
tively large intra-concept visual variance but are easy to describe
in words. For instance, we observe large performance improve-
ments in concept groups such as “skirt shape” and “sleeve style”.
This demonstrates the usefulness of text modality in accurately pre-
dicting fashion concepts. Moreover, we observe performance drops
of txtEI and imgEI in which only a single modality is exploited. It
shows the importance of multimodal information modeling as well
as its potential in boosting the performance of retrieval systems.

2) Focusing on methods that account for both visual and tex-
tual modalities, we find that incorporating domain knowledge con-
straints plays a pivotal role. Firstly, although DSP jointly models
the two modalities, it only focuses on embedding the visual image
and text into the same vector space by leveraging the cross-modal
ranking constraints. Therefore, it generally performs worse than
other methods. Secondly, we observe a moderate performance im-
provement of the prodTree method on “cloth category”, which is
supported by the introduced product category tree structure. How-
ever, the tree structure ignores other concepts and only exclusive
relation can be found among siblings. Thus, we only observe slight
variantions in performance on other concept groups. In EITree
method, we not only capture all these concepts into a tree structure,
but also incorporate different relations among sibling concepts. The
average 6.63% performance improvement of EITree method over
prodTree demonstrates the necessity of introducing such fashion
domain knowledge into our end-to-end model.

5.3 Evaluations of Retrieval

5.3.1 Automatic Fashion Retrieval (RQ2). Figure 6 illustrates the
performance comparison between the proposed EITree and the
other retrieval methods. We observe that EITree achieves the best
retrieval performance in terms of Recall@K at all the top K results
as compared to the other methods. The performance improvements
of EITree over the other methods are significant. For example, in
terms of Recall@10, EITree improves the performance of image
query by 4.6%, 5.3%, 7.8%, and 9.3% as compared to the prodTree,
DSP, AMNet, and Vebay methods, respectively. For text query, the
performance improvements of the EITree method are 6.9% and 9.0%
as compared to the prodTree and DSP methods on average. The sim-
ilar performance improvements in terms of image&text query are
also observed. Generally speaking, the proposed EITree method is
trained on both visual and textual modalities which helps to achieve
superior performance on single modality queries. Moreover, when
two modalities are both available, the performance improvements
of EITree method demonstrate its effectiveness in automatic fash-
ion retrieval due to the following aspects: a) EITree models the
semantics of fashion items in the form of a hierarchical semantic
representation consisting of multiple levels of concepts, the differ-
ent relationships between them are also incorporated in the tree
structure. Such hierarchical semantic representation provides a
more precise interpretation of fashion semantics and guides the
end-to-end multi-level learning procedure. b) The explicit similar-
ity function in EITree more accurately characterizes the semantic
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Figure 6: Performance of automatic fashion retrieval.

similarities among items by ensembling different contributions of
concepts and features. Note that during the design and implemen-
tation of the model, we did not emphisize on the efficiency. When a
query product arrives, the total time for processing it through our
trained model to get a representation and calculating its similarity
to others amounts to about 0.26 s in NVIDIA Titan X GPU.
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Figure 7: Fashion retrieval with concept feedback.

5.3.2  Fashion Retrieval with Concept Feedbacks (RQ3). In this
experiment, concept level manipulations are incorporated to char-
acterize search intent. From the results presented in Figure 7, we
observe substantial performance improvements for both EITree
method and AMNet with feedback iterations as compared to their
automatic retrieval version. Also, the results with two feedback iter-
ations (EITree-2, AMNet-2) generally work better than those with
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one feedback iteration (EITree-1, AMNet-1). It validates the useful-
ness of involving feedback in the loop. However, we also observe
that the performance of EITree suppasses that of AMNet by a large
margin, which is attributed to the explicit retrieval scheme of the
proposed method. Equipped with explicit representation, EITree
facilitates the adding and removing operation of fashion concepts
by directly increasing or decreasing the corresponding dimensions,
while AMNet can only add in concepts via matrix interpolations
and no removing operations are allowed. Moreover, because EITree
organizes fashion concepts into multiple levels and relationships
between concepts are captured, specific concept manipulation only
affects other concepts subtly. However, the direct matrix interpo-
lation operation on feature vector does not have such insulation
effect. Thus, we even observe performance decrease of Recall@1
and Recall@10 scores for AMNet-2, which might be due to the
accumulation of noise introduced by the two feedback iterations.

5.4 Qualitative Analysis

sleeve_length:short

category:t_shirt

original product_pattern:big_graphic

original category:dress skirt_shape:pencil

()
original category:coat outerwear_neckline:fur overcoat_style:flare

iﬁ(
9 &

Figure 8: Concept localization examples (RQ1).

5.4.1 Concept Localization Examples (RQ1). To validate the learn-
ing of multi-level concepts in EI tree, we visualize concepts as in
subsection 3.3. Figure 8 shows the up-sampled concept activation
maps over the original item images. We observe that the concepts
are mapped to appropriate spatial regions. For example, neckline
is most likely to occur in the upper part of cloth images, while
sleeve often occurs on two sides of cloth images, and big-graphic
is usually around the center region of a cloth. For concepts whose
location coverage is relatively large and flexible, like floral, texture
and colors, their activation maps span large portions of images.

More importantly, we discover certain relationships between
the activation maps corresponding to their concept relations as
depicted in the EI tree. First, if two concepts are under the same
parent node (or say they are siblings), they describe similar spatial
part of a cloth, e.g., peplum skirt and pencil skirt, or v-neck and
o-neck. Thus, their spatial information are also similar. Second, we
can discover general to specific spatial regions corresponding to
their concept relations. For example, we observe that the activation
map of T-shirt includes that of cloth parts such as short-sleeve and
big-graphic, and the activation map of coat includes that of cloth
parts such as fur-neckline and flare-style.
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Figure 9: Examples of fashion retrieval with feedback (better
view in color) (RQ3).

5.4.2  Concept Manipulation Examples (RQ3). In this subsection,
we give some examples in Figure 9 for fashion retrieval with concept
manipulations by the proposed EITree method. It can be seen that
the method is capable of accurately capturing user feedback on fash-
ion concepts. For example, the concepts such as color, sleeve length
and skirt length in these four examples are all correctly changed
to the user provided ones. Moreover, we observe that modifying
several concepts at the same time does not seem to deteriorate
the performance (except when the changes made by users conflict
with each other or the dataset does not contain such items). As
discussed in subsection 5.3, this is because the proposed ElTree
method encourages concept insulation via explicit representation
and explicit similarity.

6 CONCLUSIONS

In order to take advantage of multi-modalities and be able to per-
form interpretable fashion retrieval, we proposed the EI Tree which
organizes the fashion concepts into multiple semantic levels and
augments the tree structure with exclusive as well as independent
relations. It captures fashion domain knowledge and guides our
end-to-end learning framework. An explicit hierarchical similarity
function is then learned to calculate the semantic similarities among
fashion products. Based on the proposed EI Tree, we developed a
fashion retrieval scheme supporting both automatic retrieval and re-
trieval with fashion concept feedback. We systematically evaluated
the proposed method on two large fashion datasets. Experimental
results demonstrated the effectiveness of EI Tree in characterizing
fashion items and capturing search intent precisely, leading to more
accurate results as compared to the state-of-the-art approaches.
In future, we will continue our work in two directions. First, we
will study how to build or refine EI Tree automatically by mining
concepts and relations online. Second, with EI tree structure, we
may also support personalized fashion recommendation [15].
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