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Abstract: The deep learning technology has shown impressive performance in various vision tasks such as image classification, object

detection and semantic segmentation. In particular, recent advances of deep learning techniques bring encouraging performance to

fine-grained image classification which aims to distinguish subordinate-level categories, such as bird species or dog breeds. This task

is extremely challenging due to high intra-class and low inter-class variance. In this paper, we review four types of deep learning

based fine-grained image classification approaches, including the general convolutional neural networks (CNNs), part detection based,

ensemble of networks based and visual attention based fine-grained image classification approaches. Besides, the deep learning based

semantic segmentation approaches are also covered in this paper. The region proposal based and fully convolutional networks based

approaches for semantic segmentation are introduced respectively.
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1 Introduction

Deep learning has recently achieved superior performance

on many tasks such as image classification, object detec-

tion and neural language processing. The core of the deep

learning technology is that the layers of the features are

not designed by human engineers and instead learned from

data using a general-purpose learning procedure. There are

a huge number of variants of the deep learning architecture.

Most of them are branched from some original parent ar-

chitectures. In this survey, we mainly focus on the convolu-

tional neural network (CNN) and recurrent neural network

(RNN) based approaches.

CNN is a type of feed-forward artificial neural network

consisting of one or more convolutional layers which are

then followed by one or more fully connected layers as in a

standard MultiLayer perceptron (MLP). The convolutional

layer is the core building block of a CNN. The layer′s param-

eters comprise a set of learnable filters (or kernels), which

have a small receptive field, but extend through the full

depth of the input volume. CNN has wide applications in

image classification, object detection and image retrieval

systems. Fully convolutional network (FCN) is a special

convolutional neural network which replaces all the fully

connected layers in CNNs with convolutional layers. FCN
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can be trained end-to-end, pixels-to-pixels, which is very

suitable for the task of semantic segmentation.

RNN is a kind of neural network where connections be-

tween units form a directed cycle, thus the activations can

flow round in a loop. Unlike feedforward neural networks,

RNNs can use their internal memory to process arbitrary

sequences of inputs. This makes them applicable to tasks

such as unsegmented connected handwriting recognition[1]

or speech recognition[2]. One of the most popular RNNs is

the long-short term memory (LSTM)[3] which can remem-

ber a value for an arbitrary length of time. An LSTM unit

contains multiple gates that determine when the input is

significant enough to be remembered, when it should con-

tinue to remember or forget the value, and when it should

output the value. Other RNN models include GNU[4],

MGU[5].

Most deep learning networks can be trained end-to-end

efficiently using backpropagation. It is a common method

of training artificial neural networks used in conjunction

with an optimization method such as gradient descent. The

method calculates the gradient of a loss function with re-

spect to all the weights in the network. The gradient is fed

to the optimization method which in turn uses it to update

the weights, in order to minimize the loss function.

Different from backpropagation, reinforcement learning

is another kind of technology that lets the networks learn

what to do – how to map situations to actions – so as to max-

imize a numerical reward signal. The networks are not told

which actions to take, as in most forms of deep learning, but

instead must discover which actions yield the most reward

by trying them. In the most interesting and challeng-

ing cases, actions may affect not only the immediate reward
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but also the next situation and, through that, all subsequent

rewards.

In this survey, we introduce the deep learning based ap-

proaches using the backpropagation or reinforcement learn-

ing. More concretely, the deep learning based fine-grained

object classification will be firstly elaborated and then the

deep learning based image semantic segmentation.

2 Deep fine-grained image classification

With the advancement of deep learning, fine-grained im-

age classification received considerable attention. Many

deep learning based approaches have been proposed in re-

cent years. Fine-grained object classification aims to dis-

tinguish objects from different subordinate-level categories

within a general category, e.g., different species of birds,

dogs or different classes of cars. However, fine-grained clas-

sification is a very challenging task, because objects from

similar subordinate categories may have marginal visual dif-

ferences that are even difficult for humans to recognize. In

addition, objects within the same subordinate category may

present large appearance variations due to changes of scales

or viewpoints, complex backgrounds and occlusions. Fig. 1

demonstrates three different species of gulls with high intra-

class variance and small inter-class variance.

Fig. 1 Two species of gulls from CUB 200 dataset illustrate the

difficulty of fine-grained object classification: large intra-class

variance and small inter-class variance. The pose, background

and viewpoint of the gull within the same species vary largely,

and different specie of gulls display high visual similarity. The

discriminative differences only exist in some subtle regions, e.g.,

the beak or wings.

Existing deep learning based fine-grained image classifi-

cation approaches can be classified into the following four

groups according to the use of additional information or

human inference: 1) those approaches that directly use the

general deep neural networks (mostly the CNNs) to clas-

sify the fine-grained images, 2) those using the deep neural

networks as the feature extractor to better localize differ-

ent parts of the fine-grained object and do alignment, 3)

those using multiple deep neural networks to better dif-

ferentiate highly visually-similar fine-grained images, and

4) those using the visual attention mechanism to find the

most discriminative regions of the fine-grained images.

In this section, we will first introduce several convo-

lutional neural networks which are mostly used for fine-

grained image classification. Then, part detection and

alignment based approaches and ensemble of networks

based approaches will be elaborated respectively. The last

part of this section will review the attention based ap-

proaches.

2.1 General CNN for fine-grained image
classification

CNN has a long history in computer vision. It was firstly

introduced by LeCun et al.[6] and has consistently been

competitive with other methods for recognition tasks. Re-

cently, with the advent of large-scale category-level training

data, e.g., ImageNet[7], CNN exhibits superior performance

in large-scale visual recognition. The impressive perfor-

mance of CNN[8] also motivates researchers to adapt CNNs

pre-trained on ImageNet to other domains and datasets,

such as the fine-grained image datasets. Besides, CNN usu-

ally is able to yield more discriminative representation of

the image, which is essential for fine-grained image classi-

fication. Most of the current state-of-the-art CNNs can be

adopted for fine-grained image classification.

AlexNet[6] is a deep convolutional neural network which

is a winner of the ILSVRC-2012 competition with top-5 test

error rate of 15.3 %, compared to 26.2 % achieved by the

second-best entry. It contains eight learnable layers. The

first five are convolutional and the remaining three are fully-

connected. Fig. 2 illustrates the architecture of AlexNet.

Fig. 2 Framework of AlexNet. This figure is from the original

paper[8].

The VGG net[9] increases the depth of the neural net-

works, which not only achieves the state-of-the-art accu-

racy on ILSVRC classification and localization tasks, but

also is applicable to other image recognition datasets. The

VGG-16 has 13 convolutional layers with 3 fully connected

layers, while the VGG-19 has 3 more convolutional layers

than a VGG-16 model. They use filters with a very small

receptive field: 3 × 3 (which is the smallest size to capture

the notion of left/right, up/down, center). All hidden layers

are equipped with the rectification non-linearity.

The GoogLeNet[10] sets the new state-of-the-art for clas-

sification and detection in the ImageNet large-scale visual

recognition challenge 2014 (ILSVRC14). The main hall-

mark of this architecture is the improved utilization of the
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computing resources inside the network. This is achieved by

a carefully crafted design called “inception module” that al-

lows for increasing the depth and width of the network while

keeping the computational budget constant. GoogLeNet is

22 layers deep when counting only layers with parameters

(or 27 layers if we also count pooling). By stacking the in-

ception modules, it uses 12 times fewer parameters than the

winning architecture of Krizhevsky et al.[8] The inception

module is depicted as Fig. 3. The 1×1 convolutions are used

to compute reductions before the expensive 3×3 and 5×5

convolutions. Besides being used as reductions, they also

include the use of rectified linear activation which makes

them dual-purpose.

Fig. 3 Inception module of GoogLeNet. This figure is from the

original paper [10].

Some other general deep convolutional feature extrac-

tors for image classification include CNN features off-the-

shelf[11], ONE[12] and InterActive[13]. When using these

CNNs for fine-grained image classification, the last fully-

connected layer will be set as the class number of the fine-

grained images such as 200 for the CUB-Bird-2011 dataset.

The classification results indicate that the generic descrip-

tors extracted from the convolutional neural networks are

very powerful.

2.2 Part detection and alignment based
approaches

Semantic part localization can facilitate fine-grained cat-

egorization by explicitly isolating subtle appearance differ-

ences associated with specific object parts. Localizing the

parts in an object is therefore important for establishing

correspondence between object instances and discounting

object pose variations and camera view position changes.

Many traditional approaches follow the pipeline illustrated

in Fig. 4. The parts of the fine-grained object are first local-

ized, such as head and torso for bird species classification,

then the part alignment is done and the last is the clas-

sification using the feature extracted on the aligned parts.

POOF[14] learns a set of intermediate features using data

mining techniques. Each of these features specializes in

discrimination between two particular classes based on the

appearance at a particular part. To find accurate part such

as face and eyes of dogs, Liu et al.[15] build exemplar-based

geometric and appearance models of dog breeds and their

face parts. Yang et al.[16] propose a template model to dis-

cover the common geometric patterns of object parts and

the co-occurrence statistics of the patterns. Features are

extracted within the aligned cooccurred patterns for fine-

grained recognition. Similarly, Gavves et al.[17] and Chai

et al.[18] segment images and align the image segments in

an unsupervised fashion. The alignments are then used

to transfer part annotations from training images to test

images and extract features for classification. In this sub-

section, we will introduce the part detection methods based

on deep learning.

Fig. 4 General framework for part detection and alignment

based approaches.

2.2.1 Part-based R-CNN

With deep convolutional features, the part detector

which is widely used in many approaches improves its per-

formance. Therefore, the Part-based R-CNN[19] learns the

part detectors by leveraging deep convolutional features

computed on bottom-up region proposals. It extends R-

CNN[20] to detect objects and localize their parts under

a geometric prior. The whole process is illustrated in

Fig. 5. Starting from several region proposals using selec-

tive search[21], both object and part detectors are trained

based on the deep convolutional features. During testing,

all proposals are scored by all detectors, and non-parametric

geometric constraints are applied to rescore the proposals

and choose the best object and part detections. The final

step is to extract features on the localized semantic parts

for fine-grained recognition for a pose-normalized represen-

tation and then train a classifier for the final categorization.

Fig. 5 Part-based R-CNN for fine-grained image classification.

This figure is from the original paper [19].

In order to make the deep CNN derived features more dis-

criminative for the target task of fine-grained bird classifi-

cation, ImageNet pre-trained CNN is first fine-tuned for the
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200-way bird classification task from ground truth bound-

ing box crops of the original CUB images. In particular,

the original 1 000-way fc8 classification layer in CaffeNet,

which is almost identical as the AlexNet, is replaced with

a new 200-way fc8 layer. Both the full objects bounding

box annotations and a fixed set of semantic parts annota-

tions are used to train multiple detectors. All objects and

each of their parts are initially treated as independent ob-

ject categories: A one-versus-all linear SVM is trained on

the convolutional feature descriptors extracted over region

proposals. Because the individual part detectors are less

than perfect, the window with highest individual part de-

tector scores is not always correct, especially when there are

occlusions. A geometric constraint over the layout of the

parts relative to the object location is considered to filter

out incorrect detections.

In testing, the bottom-up region proposals are scored by

all detectors, and the non-parametric geometric constraints

are imposed to rescore the windows and choose the best

object and part detections. At the final step, features for

the predicted whole object or part region are extracted and

concatenated using the network fine-tuned for that particu-

lar whole object or part. Then, a one-versus-all linear SVM

classifier is trained using the final feature representation.

2.2.2 Part localization using multi-proposal con-

sensus

Different from the part-based R-CNN, which uses the ge-

ometric constraint to better locate the parts, multi-proposal

consensus[22] predicts the keypoint and region (head, torso,

body) using a single neural network based on the AlexNet[8]

architecture.

The multi-proposal consensus modifies the AlexNet to

simultaneously predict all keypoint locations and their vis-

ibilities for any given image patch. The final fc8 layer is re-

placed with two separate output layers for keypoint localiza-

tion and visibility, respectively. The network is trained on

edge box crops[23] extracted from each image and is initial-

ized with a pre-trained AlexNet trained on the ImageNet[7]

dataset. After getting the keypoint predictions and their

visibilities, the ones with low visibility confidences will be

removed. The remaining predictions will have a peaky dis-

tribution around the ground truth. Therefore, medoid is

used as a robust estimator for this peak. Fig. 6 demon-

strates the process of finding the right eye keypoint. The

best location of the right eye is determined by performing

confidence thresholding and finding the medoid. Black edge

boxes without associated dots make predictions with confi-

dences below the set threshold, and green denotes an outlier

with a high confidence score.

Fig. 6 Part localization using multi-proposal consensus. This

figure is from the original paper[22].

Using the keypoints, three regions are identified from

each bird: head, torso, and whole body. The head is de-

fined as the tightest box surrounding the beak, crown, fore-

head, eyes, nape, and throat. Similarly, the torso is the

box around the back, breast, wings, tail, throat, belly, and

legs. The whole body bounding box is the object bounding

box provided in the annotations. To perform classification,

fc6 features of AlexNet are extracted from these localized

regions. These CNN features are then concatenated into

a feature vector of length 4 096 × 3, and used for 200-way

linear one-vs-all SVM classification.

2.2.3 Pose normalized nets

The pose normalized net[24] first computes an estimate of

the object′s pose which is used to compute local image fea-

tures. These local features in turn are used for classification.

The features are computed by applying deep convolutional

networks to image patches that are located and normalized

by the pose. The pose normalized net integrates lower-level

feature layers (conv5, fc6) with pose-normalized extraction

routines and higher-level feature layers (fc8) with unaligned

image features as shown in Fig. 7.

In training, the pose normalized net uses the DPM[25] to

predict 2D locations and the visibility of 13 semantic part

keypoints or directly uses the pre-provided object bound-

ing box and part annotations to learn the pose prototypes.

Then, different parts of the object will be warped and fed

Fig. 7 Pose normalized nets. This figure is from the original paper [24].



B. Zhao et al. / A Survey on Deep Learning-based Fine-grained Object Classification and Semantic Segmentation 5

into different deep neural networks (AlexNet) to extract the

features. Finally, the classifier is trained with the concate-

nated convolutional features extracted from each prototype

region and the entire image.

In testing, given a test image, groups of detected key-

points or the oracle parts annotations are used to compute

multiple warped image regions that are aligned with pro-

totypical models. Multiple warped image regions are then

aligned with prototypical models. Then, the pose-warped

image regions are each fed into a feature extractor, which is

a deep convolutional neural network[8]. It is proved that a

model that integrates lower-level feature layers with pose-

normalized extraction routines and higher-level feature lay-

ers with unaligned image features works best.

2.2.4 Part-stack CNN

Based on manually-labeled strong part annotations, the

part-stacked CNN (PS-CNN) model[26] consists of a fully

convolutional network to locate multiple object parts and a

two-stream classification network that encodes object-level

and part-level cues simultaneously, as shown in Fig. 8.

An FCN is achieved by replacing the parameter-rich fully

connected layers in standard CNN architectures by convo-

lutional layers with 1 × 1 kernels. Given an input RGB

image, the output of an FCN is a feature map in the re-

duced dimension compared to the input. The computation

of each unit in the feature map only corresponds to pixels

inside a region with fixed size in the input image, which is

called its receptive field. FCN is preferred in PS-CNN due

to the following three reasons: 1) Feature maps generated

by FCN can be directly utilized as the part localization re-

sults in the classification network. 2) Results of multiple

object parts can be obtained simultaneously using an FCN.

3) FCN is very efficient in both learning and inference.

Using M keypoints annotated at the center of each ob-

ject part, the localization network, which is a fully con-

volutional network[27], is trained to generate dense output

feature maps for locating object parts. A Gaussian kernel

is used to remove isolated noise in the feature maps. The fi-

nal output of the localization network is M locations in the

conv5 feature map, each of which is computed as the loca-

tion with the maximum response for one object part. Then,

the part locations are fed into the classification network, in

which a two-level architecture is adopted to analyze images

at both object-level (bounding boxes) and part-level (part

landmarks).

At the part level, the computation of multiple parts is

first conducted via a shared feature extraction route, and

then separated through a part crop layer. The input for

the part crop layer is a set of feature maps, e.g., the out-

put of the conv5 layer, and the predicted part locations

from the previous localization network, which also reside in

conv5 feature maps. For each part, the part crop layer ex-

tracts a local neighborhood region centered at the detected

part location. At the object level, bounding-box supervi-

sion is used to extract object-level CNN features, i.e., pool5

features. Three fully connected layers achieve the final clas-

sification results based on a concatenated feature map con-

taining information from all parts and the bounding box.

2.2.5 Deep LAC

The deep LAC[28] incorporates part localization, align-

ment, and classification in one deep neural network. Its

framework is demonstrated in Fig. 9. A valve linkage func-

tion (VLF) is proposed for back-propagation chaining, and

to form the deep localization, alignment and classification

(LAC) system. The VLF can adaptively compromise the er-

rors of classification and alignment when training the LAC

model. It in turn helps update localization.

Fig. 8 Part-stack CNN. This figure is from the original paper [26].
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Fig. 9 Framework of deep LAC. This figure is from the original paper[28].

The part localization sub-network consists of 5 convo-

lutional layers and 3 fully connected ones. It outputs the

commonly used coordinates for the top-left and bottom-

right bounding-box corners, given an input natural image

for fine-grained recognition. In the training phase, deep

LAC regresses bounding boxes of part regions. Ground

truth bounding boxes are generated with part annotations.

The alignment sub-network receives part locations (i.e.,

bounding box) from the localization sub-network, performs

template alignment[29] and feeds a pose-aligned part image

to classification. The alignment sub-network offsets trans-

lation, scaling, and rotation for pose-aligned part region

generation, which is important for accurate classification.

Apart from pose aligning, this sub-network plays a crucial

role in bridging the backward-propagation (BP) stage of the

whole LAC model, which helps utilize the classification and

alignment results to refine localization.

In the deep LAC framework, the VLF in the alignment

sub-network is the most essential part which optimally con-

nects the localization and classification modules. It not

only connects all sub-networks, but also functions as in-

formation valve to compromise classification and alignment

errors. If the alignment is good enough in the forward prop-

agation stage, VLF guarantees corresponding accurate clas-

sification. Otherwise, errors propagated from classification

finely tune the previous modules. These effects make the

whole network reach a stable state.

2.3 Ensemble of networks based ap-
proaches

Dividing the fine-grained dataset into multiple visually

similar subsets or directly using multiple neural networks to

improve the performance of classification is another widely

used method in many deep learning based fine-grained im-

age classification systems. We will introduce these methods

in this subsection.

2.3.1 Subset feature learning networks

As shown in Fig. 10, the subset feature learning

networks[30] consist of two main parts: a domain-generic

convolution neural network and several specific convolu-

tional neural networks. The domain-generic convolution

neural network is first pre-trained on a large-scale dataset

of the same domain as the target dataset and then fine-

tuned on the target dataset. Using the fc6 feature with

linear discriminant analysis (LDA) to reduce its dimension-

ality, visually similar species are clustered into K subsets

to train multiple specific CNNs in the second part.

Fig. 10 Framework of subset feature learning networks. This

figure is from the original paper [30].

A separate CNN is learned for each of the K pre-clustered

subsets. The aim is to learn features for each subset which

can more easily differentiate visually similar species. The

fc6 feature of each individual CNNs is used as the learned

subset feature for each subset. Each specific convolutional

neural networks is suitable for a subset of the images.

Therefore, how to choose the best specific convolutional

neural networks for an image is the core problem of the
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subset feature learning networks.

A subset selector CNN (SCNN) is utilized to select the

most relevant CNNs to make prediction for a given image.

Using the output from the pre-clustering as the class labels,

SCNN is trained by changing the softmax layer fc8 to make

it have K outputs. The softmax layer predicts the proba-

bility of the test image belonging to a specific subset, and

then max voting is applied to this prediction to choose the

most likely subset. As with the previously trained CNNs,

the weights of SCNN are trained via backpropagation and

stochastic gradient descent (SGD) using the AlexNet[8] as

the starting point.

2.3.2 Mixture of deep CNN

Similar to subset feature learning networks, the

MixDCNN[31] system will also learn K specific CNNs. How-

ever, it does not require pre-dividing images into K subsets

of similar images. The image will be fed into all the K CNNs

and the outputs from each CNN are combined to form a

single classification decision. In contrast to subset feature

learning networks, MixDCNN adopts the occupation prob-

abilities equation to perform joint end-to-end training of

the K CNNs simultaneously.

The occupation probability is defined as

αk =
eCk

∑K
c=1 eCc

(1)

where Ck is the best classification result for the k-th CNN.

The occupation probability gives a higher weight to compo-

nents that are confident about their prediction. The overall

structure of this network is shown in Fig. 11.

The occupation probability of each subset is based on

the classification confidence from each component, which

makes it possible to jointly train the K DCNNs (compo-

nents) without having to estimate a separate label vector

y or train a separate gating network as in subset feature

learning networks. Classification is performed by multiply-

ing the output of the final layer from each component by

the occupation probability and then summing over the K

components. This mixes the network outputs together and

the probability for each class is then produced by applying

the softmax function.

Fig. 11 Framework of MixDCNN. This figure is from the origi-

nal paper [31].

2.3.3 CNN tree

Motivated by the observation that a class is usually con-

fused by a few number of other classes, which are called the

confusion set, in multi-class classification, more discrimina-

tive features could be learned by a specific CNN to distin-

guish the classes only in this set. Based on this observation,

CNN tree[32] is used to progressively learn fine-grained fea-

tures for different confusion sets.

Given a node of the tree, a CNN model is first trained

on its class set. Next, the confusion set of each class is es-

timated by using the trained model. Then, these confusion

sets are packed into several confusion supersets and each of

them is assigned to a new child node for further learning.

This procedure repeats until it reaches the maximal depth.

The tree structure is shown in Fig. 12. The CNN tree pro-

gressively learns fine-grained features to distinguish a sub-

set of classes, by learning features only among these classes.

Such features are expected to be more discriminative, com-

pared to features learned for all the classes. Besides, test

images that are misclassified by the root CNN model might

be the correctly classified by its descendent.

Fig. 12 Framework of CNN tree. This figure is from the original paper [32].
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2.3.4 Multiple granularity CNN

A core observation is that a subordinate-level label car-

ries an implied hierarchy of labels, each corresponding to

a level in the domain ontology. For instance, melanerpes

formicivorus, also known as acorn woodpecker, can also be

called melanerpes at genus level, or picidae at family level.

These labels are free for extracting their corresponding dis-

criminative patches and features. These free labels can be

used to train a series of CNN-based classifiers, each special-

ized at one grain level. The internal representations of these

networks have different regions of interest, allowing the con-

struction of multi-grained descriptors that encode informa-

tive and discriminative features covering all the grain levels.

Based on this idea, the multiple granularity CNN[33] con-

tains a parallel set of deep convolutional neural networks as

shown in Fig. 13, each optimized to classify at a given gran-

ularity. In other words, the multiple granularity CNN is

composed of a set of single-grained descriptors. Saliency

in their hidden layers guides the selection of regions of in-

terest (ROI) from a common pool of bottom-up proposed

image patches. ROI selection is therefore by definition

granularity-dependent, in the sense that selected patches

are results of the associated classifier of a given granularity.

Meanwhile, ROI selections are also cross-granularity depen-

dent: The ROIs of a more detailed granularity are typically

sampled from those at the coarser granularities. Finally,

per-granularity ROIs are fed into the second stage of the

framework to extract per-granularity descriptors, which are

then merged to give classification results.

Fig. 13 Framework of Multiple Granularity NN. This figure is

from the original paper [33].

2.3.5 Bilinear deep network models

The bilinear models[34] are a recognition architecture that

consists of two feature extractors whose outputs are mul-

tiplied using outer product at each location of the image

and pooled to obtain an image descriptor. This architec-

ture, as shown in Fig. 14, can model local pairwise feature

interactions in a translationally invariant manner which is

particularly useful for fine-grained categorization.

A bilinear model for image classification consists of a

quadruple B = (fA, fB ,P , C). Here fA and fB are feature

functions, P is a pooling function and C is a classification

function. A feature function is a mapping f : L×I → Rc×D

that takes as input an image I and a location L and outputs

a feature of size c×D. The locations generally can include

position and scale. The feature outputs are combined at

each location using the matrix outer product, i.e., the bi-

linear feature combination of fA and fB at a location l is

given by bilinear (l, I, fA, fB) = fA(l, I)�fB(l, I). Both fA

and fB must have the feature dimension c to be compati-

ble. To obtain an image descriptor, the pooling function P
aggregates the bilinear features across all locations in the

image. One choice of pooling is to simply sum all the bi-

linear features, i.e., φ(I) =
∑

l∈L bilinear (l, I, fA, fB). An

alternative is max-pooling. Both ignore the locations of the

features and are hence orderless. If fA and fB extract fea-

tures of size C ×M and C ×N respectively, then φ(I) is of

size M×N . The bilinear vector obtained by reshaping φ(I)

to size MN × 1 is a general-purpose image descriptor that

can be used with a classification function C. Intuitively, the

bilinear form allows the outputs of the feature extractors

fA and fB to be conditioned on each other by considering

all their pairwise interactions similar to a quadratic kernel

expansion.

Fig. 14 Framework of bilinear CNN model. This figure is from

the original paper [34].

A natural candidate for the feature function f is a CNN

consisting of a hierarchy of convolutional and pooling lay-

ers. In this paper, the authors use two different CNNs pre-

trained on the ImageNet dataset[7] truncated at a convolu-

tional layer including non-linearities as feature extractors.

By pre-training, bilinear deep network model will benefit

from additional training data in the cases of domain specific

data scarcity. This has been shown to be beneficial for a

number of recognition tasks ranging from object detection,

texture recognition, to fine-grained classification[20, 35−37].

Another advantage of using only the convolutional layers is

that the resulting CNN can process images of an arbitrary

size in a single forward-propagation step and produce out-

puts indexed by the location in the image and the feature

channel.

2.4 Visual attention based approaches

One of the most curious facets of the human visual sys-

tem is the presence of attention. Rather than compressing
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Fig. 15 Framework of two-level attention. This figure is from the original paper [38].

an entire image into a static representation, the attention

system allows for salient features to dynamically come to

the forefront as needed. This is especially important when

there are many clutters in an image. A visual attention

mechanism is also used in many fine-grained image classifi-

cation systems.

2.4.1 Two-level attention

The two-level attention model[38], illustrated in Fig. 15

integrates three types of attention: the bottom-up atten-

tion that proposes candidate patches, the object-level top-

down attention that selects relevant patches to a certain

object, and the part-level top-down attention that localizes

discriminative parts. These attention types are combined

to train domain-specific deep nets, and then used to find

foreground object or object parts to extract discriminative

features. The model is easy to generalize, since it does not

require the object bounding box or part annotation.

Then, a DomainNet is trained with the patches selected

by the FilterNet. Essentially, spectral clustering is per-

formed on the similarity matrix S to partition the filters in

a middle layer into k groups. Each cluster acts as a part de-

tector. The patches selected by the part detector are then

wrapped back to the input size of DomainNet to generate

activations. The activations of different parts and the orig-

inal image are concatenated and used to train an SVM as

the part-based classifier. Finally, the prediction results of

the object-level attention and the part-level attention are

merged to utilize the advantage of the two level attention.

2.4.2 Attention for fine-grained categorization

Inspired from the way how humans perform visual se-

quence recognition, such as reading by continually moving

the fovea to the next relevant object or character, recog-

nizing the individual object, and adding the recognized ob-

ject to the internal representation of the sequence, the at-

tention for fine-grained categorization (AFGC) system is

proposed[39]. It is a deep recurrent neural network that at

each step, it processes a multi-resolution crop of the input

image, called a glimpse. The network uses information from

the glimpse to update its internal representation of the in-

put, and outputs the next glimpse location and possibly the

next object in the sequence.

Fig. 16 shows the framework of the attention module in

AFGC. It uses an RNN and a powerful visual network

(GoogLeNet) to perform fine-grained classification. The

system as a whole takes as input an image of any size

and outputs N-way classification scores using a softmax

classifier, which is a task similar to find digits and digit

addition[40]. The model is a recurrent neural network, with

N steps that correlate with N “glimpses” into the input

image. At step n, the model receives row and column coor-

dinates ln, which describe a point in the input image. The

network extracts a multi-resolution patch from the input

image at those coordinates, passes the pixels through fully-

connected layers which combine with activations from the

previous glimpse step, and either outputs coordinates l̂n for

the next glimpse or a final classification ys.

Fig. 16 Framework of attention for fine-grained categorization.

This figure is from the original paper [39].

2.4.3 FCN attention

FCN attention[41] is a reinforcement learning-based

fully convolutional attention localization network to adap-

tively select multiple task-driven visual attention re-

gions. Compared to previous reinforcement learning-based

models[39, 40, 42], the proposed approach is noticeably more

computationally efficient during both training and testing

because of its fully-convolutional architecture, and it is ca-

pable of simultaneous focusing its glimpse on multiple visual

attention regions.
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Fig. 17 illustrates the architecture of the fully convolu-

tional attention localization network. It can localize mul-

tiple object parts using the attention mechanism. Differ-

ent parts can have different pre-defined sizes. The network

contains two components: part localization component and

classification component.

The part-localization component uses a fully-

convolutional neural network to locate part locations.

Given an input image, the basis convolutional feature maps

are extracted using the VGG 16 model[9] pre-trained on Im-

ageNet dataset[7] and fine-tuned for the target fine-grained

dataset. The attention localization network localizes multi-

ple parts by generating a score map for each part using the

basis convolutional feature map. Each score map is gener-

ated using two stacked convolutional layers and one spatial

softmax layer. The first convolutional layer uses sixty-four

3 × 3 kernels, and the second one uses one 3 × 3 kernel

to output a single-channel confidence map. The spatial

softmax layer is applied to the confidence map to convert

the confidence score into probability. The attention region

with highest probability is selected as the part location.

The same process is applied for a fixed number of time

steps for multiple part locations. Each time step generates

the location for a particular part.

The classification component contains one deep CNN

classifier for each part as well as the whole image. Different

parts might have different sizes, and a local image region

is cropped around each part location according to its size.

An image classifier for each local image region is trained as

well as the whole image separately. The final classification

result is the average of all the classification results from the

individual classifiers. In order to discriminate the subtle

visual differences, each local image region is resized to high

resolution. A deep convolutional neural network is trained

for each part for classification separately.

2.4.4 Diversified visual attention

A diversified visual attention network (DVAN)[43] is pro-

posed to pursue the diversity of attention and is able to

gather discriminative information to the maximal extent.

The architecture of the proposed DVAN model is described

in Fig. 18, which includes four components: attention can-

vas generation, CNN feature learning, diversified visual at-

tention and classification. DVAN first localizes several re-

gions of the input image at different scales and takes them

as the “canvas” for following visual attention. A convo-

lutional neural network (i.e., VGG-16) is then adopted to

learn convolutional features from each canvas of attention.

To localize important parts or components of the object

within each canvas, a diversified visual attention compo-

nent is introduced to predict the attention maps, so that

important locations within each canvas are highlighted and

information gain across multiple attention canvases is maxi-

mized. Different from traditional attention models focusing

on a single discriminative location, DVAN jointly identifies

diverse locations with the help of a well designed diver-

sity promoting loss function. According to the generated

attention maps, the convolutional features will be dynami-

cally pooled and accumulated into the diversified attention

model. Meanwhile, the attention model will predict the

object class at each time step. All the predictions will be

averaged to obtain the final classification results.

Fig. 17 Framework of FCN attention. This figure is from the original paper [41].
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Fig. 18 Framework of diversified visual attention networks. This figure is from the original paper [43].

The adopted visual attention component in DVAN con-

sists of two modules: attentive feature integration and at-

tention map prediction, as demonstrated in the top and

bottom panels of Fig. 19. To diversify the attention regions

at each time step, a diversified loss function and attention

canvas generation methods are proposed in DVAN.

Fig. 19 DVAN attention component. This figure is from the

original paper[43].

2.5 Performance comparison and analysis

We list the classification accuracy of CUB200-2011

dataset[44] using the above mentioned deep learning ap-

proaches in Table 1. The classification accuracy is defined

as the average of class classification accuracy. CUB-200-

2011 dataset consists of 11 778 images from 200 bird cate-

gories. It provides rich annotations, including image-level

labels, object bounding boxes, attribute annotations and

part landmarks. There are 5 994 images for training and

5 794 images for testing. Note that some approaches are

omitted since they did not report the result on this dataset.

From Table 1, it can be seen that the approaches are

grouped into three groups. The approaches in first group

are based on the part detection and alignment and the ap-

proaches in second group ensemble multiple neural networks

to boost the classification performance. While the visual

attention based models in the third group simulate the ob-

servation process of human beings and usually do not need

the bounding box information or part annotation. These

approaches are based on different neural networks such as

AlexNet[8], VGGNet[9] or GoogLeNet[10]. Some approaches

may use the bounding box and part annotations in training

and testing, while some only use the category label to train

the networks.

In general, part localization-based fine-grained recogni-

tion algorithms can localize important regions using a set

of predefined parts. However, detailed part annotations are

usually difficult to obtain. Recent fine-grained object clas-

sification methods are capable of learning discriminative

region localizers only from category labels with reinforce-

ment learning. However, they cannot accurately find mul-

tiple distinctive regions without utilizing any explicit part

information. Comparing to the labor and time consuming

part annotation for fine-grained object classification, the

attribute labeling is more amenable. Therefore, attribute

label information can be used as a weak supervision to the

part localization to further improve the classification accu-

racy.

Meanwhile, the recurrent visual attention models are ef-

fective in localizing the parts and learn their discriminative

representations in an end-to-end way. Many recurrent vi-

sual attention models are proposed in recent years. Existing

visual attention models can be classified as soft or hard at-

tention. Soft attention models[45, 46] predict the attention

regions in a deterministic way. As a consequence, it is differ-

entiable and can be trained using back-propagation. Hard

attention models[39−42, 47] predict the attention points of

an image, which are stochastic. They are usually trained

by reinforcement learning[48] or maximizing an approximate

variational lower bound. In general, soft attention models

are more efficient than hard attention models, since hard

attention models require sampling for training while soft

attention models can be trained end-to-end. However, the

visual attention models also suffer from several drawbacks

in practice. Firstly, by far the soft attention models only

result in small performance improvement. More powerful

visual attention model is expected to improve the classi-

fication accuracy. Secondly, the hard attention methods

using reinforcement learning techniques usually are not as

efficient as the soft attention methods. Methods which can

improve the efficiency of the hard attention model should

be explored further.
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Table 1 Performance comparison with different approaches

Method Architecture Train annotation Test annotation Accuracy

Part detection and alignment based approaches

Part-based R-CNN[19] AlexNet BBox + Parts BBox 76.4

Part-based R-CNN[19] AlexNet BBox + Parts − 73.9

Multi-proposal consensus[22] AlexNet BBox BBox 80.3

PoseNorm[24] Alexnet BBox + Parts − 75.7

PS-CNN[26] AlexNet BBox + Parts BBox 76.2

Deep LAC[28] AlexNet BBox BBox 80.3

Ensemble of networks based approaches

Subset FL[30] AlexNet − − 77.5

MixDCNN[31] AlexNet BBox BBox 74.1

Multiple granularity CNN[33] VGGNet BBox − 83.0

Multiple granularity CNN[33] VGGNet − − 81.7

Bilinear CNN[34] VGGNet BBox BBox 77.2

Bilinear CNN[34] VGGNet − − 72.5

Visual attention based approaches

Two-level attention[38] AlexNet − − 69.7

FCN attention[41] GoogLeNet BBox − 84.3

FCN attention[41] GoogLeNet − − 82.0

DVAN[43] VGGNet − − 79.0

3 Deep image semantic segmentation

Deep learning based image semantic segmentation aims

to predict a category label for every image pixel, which

is an important yet challenging task for image under-

standing. Recent approaches have applied convolutional

neural network (CNNs)[49−51] to this pixel-level labeling

task and achieved remarkable success. A number of these

CNN-based methods for segmentation are region-proposal-

based methods[20, 52], which first generate region propos-

als and then assign category labels to each. Very recently,

FCN[50, 52, 53] has become a popular choice for semantic seg-

mentation, because of its effective feature generation and

end-to-end training.

3.1 Region proposal based approaches

In R-CNN[20], semantic image segmentation is performed

based on the object detection results. The detection system

is demonstrated in Fig. 20. Taking an input image, selec-

tive search[21] is used to extract around 2 000 bottom-up

region proposals. A convolutional neural network takes the

affine warped regions as the input to generate a fixed-size

CNN feature, regardless of the region′s shape. Then, sev-

eral class-specific linear SVMs are used to classify different

regions. Finally, the category-specific mask of the surviving

candidate is predicted using the features from the CNN.

Fig. 20 Framework of region CNN. This figure is from the orig-

inal paper [20].

Similar to R-CNN, simultaneous detection and segmen-

tation (SDS)[52] starts the semantic segmentation with

category-independent bottom-up object proposals. The

framework of SDS is shown in Fig. 21. Multisale combinato-

rial grouping (MCG)[54] is chosen in the paper to generate

2 000 region candidates per image. Two CNNs (bBox CNN

and region CNN) are trained to extract the features from

the bounding box of the region and the cropped, warped

region with the background of the region masked out (with

the mean image). Compared to using the same CNN for

both inputs (image windows and region masks), using sep-

arate networks where each network is fine tuned for its re-

spective role dramatically improves the performance.

Fig. 21 Framework of simultaneous detection and segmentation.

This figure is from the original paper [52].

A region classifier is then trained using the CNN features

to assign a score for each category to each candidate. To

generate the final semantic segmentation, SDS first learns

to predict a coarse, top-down figure-ground mask for each

region. The final segmentation is generated by projecting

the coarse mask to superpixels by assigning to each super-

pixel the average value of the coarse mask in the superpixel.

3.2 FCN based approaches

DAG[51] is a fully convolutional network (FCN) trained

end-to-end, pixels-to-pixels on semantic segmentation.

Fig. 22 demonstrates framework of DAG net. It transforms
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the fully connected layers into convolutional layers and en-

ables a classification net to output a heatmap. A spatial

loss is used to train the FCN end-to-end efficiently.

Fig. 22 Framework of DAG nets. This figure is from the original

paper [51].

This approach does not make use of pre-processing and

post-processing complications, including superpixels[49, 52],

proposals[52, 55], or post-hoc refinement by random fields or

local classifiers[49, 55].

The deconvolution networks as shown in Fig. 23 are com-

posed of two parts: convolution and deconvolution net-

works. The convolution network corresponds to the fea-

ture extractor that transforms the input image to multi-

dimensional feature representation, whereas the deconvolu-

tion network is a shape generator that produces object seg-

mentation from the features extracted from the convolution

network. The final output of the network is a probability

map with the same size as the input image, indicating the

probability of each pixel that belongs to one of the prede-

fined classes.

VGG 16-layer net[9] is employed for the convolutional

part with its last classification layer removed. The de-

convolution network has 13 convolutional layers altogether,

where rectification and pooling operations are sometimes

performed between convolutions, and 2 fully connected lay-

ers are augmented at the end to impose class-specific pro-

jection. The deconvolution network is a mirrored version

of the convolution network, and has multiple series of un-

pooling, deconvolution, and rectification layers. In contrary

to the convolution network that reduces the size of activa-

tions through feed-forwarding, deconvolution network en-

larges the activations through the combination of unpooling

and deconvolution operations. Finally, the dense pixel-wise

class prediction map is constructed through multiple series

of unpooling, deconvolution and rectification operations.

DeepLab[57] employed the convolution with upsampled

filters or “atrous convolution” as a powerful tool for image

segmentation. Atrous convolution explicitly controls the

resolution at which feature responses are computed within

deep convolutional neural networks. It also effectively en-

larges the field of view of filters to incorporate larger con-

text without increasing the number of parameters or the

amount of computation. The atrous spatial pyramid pool-

ing (ASPP) is used to segment objects at multiple scales.

ASPP probes an incoming convolutional feature layer with

filters at multiple sampling rates and effective fields-of-

views, thus capturing objects as well as image context at

multiple scales. Another contribution of DeepLab is that it

improves the localization of object boundaries by combin-

ing methods from DCNNs and a fully connected conditional

random field (CRF), which is shown both qualitatively and

quantitatively to improve localization performance. The

framework of DeepLab model is illustrated as Fig. 24.

4 Conclusions

The paper surveys some recent progress in deep learning

based fine-grained image classification and semantic seg-

mentation. Several general convolutional neural networks

are first introduced including the AlexNet, VGG net and

GoogLeNet. They can be directly adapted to find-grained

image classification. Since the subtle differences of visually

similar fine-grained objects usually exist in some common

parts, many approaches resort to deep learning technology

to boost the performance of part localization, while some

approaches integrate the part localization into the deep

learning framework and can be trained end-to-end. Some

fine-grained classification approaches also combine multi-

ple neural networks to gain more classification capability

for fine-grained images. By integrating the attention mech-

anism, some visual attention based approaches can auto-

matically localize the most discriminative regions of the

fine-grained images without using any bounding box or part

Fig. 23 Framework of deconvolution networks. This figure is from the original paper [56].
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Fig. 24 Framework of DeepLab. This figure is from the original

paper [57].

annotation. The approaches for possible growth of the fine-

grained image classification include: 1) Using deeper neural

networks to boost the performance. Residual Networks are

one of the recently proposed deep neural networks with a

depth of up to 152 layers which is 8 times deeper than VGG

nets but still having lower complexity. An ensemble of these

residual nets achieves 3.57 % error on the ImageNet test set.

Using these deeper networks as the feature extractor or base

networks will certainly improve the accuracy. 2) Using re-

inforcement learning technique[48, 58] to learn task-specific

policies will also benefit the fine-grained object classifica-

tion, because they can learn the part localization and dis-

criminative representation in an end-to-end way, and they

do not require manually labeled object. For the semantic

segmentation, region proposal based approaches and FCN

based approaches are introduced respectively.

Appendix

Links to codes

• AlexNet

https://github.com/BVLC/caffe/tree/master/

models/bvlc\_alexnet

• VGGNet

http://www.robots.ox.ac.uk/~vgg/research/very_

deep

• GoogLeNet

https://github.com/BVLC/caffe/tree/master/

models/bvlc_googlenet

• Deep residual networks

https://github.com/KaimingHe/deep-residual-networks

• Part-based RCNNs for fine-grained category detection

https://github.com/n-zhang/part-based-RCNN

• Fine-grained classification via mixture of deep convo-

lutional neural networks

https://github.com/zongyuange/MixDCNN

• Bilinear CNN models for fine-grained visual recogni-

tion

https://bitbucket.org/tsungyu/bcnn.git

• Fully convolutional networks for semantic segmenta-

tion

https://github.com/shelhamer/fcn.berkeleyvision.

org

• Simultaneous detection and segmentation

https://github.com/bharath272/sds_eccv2014

• DeepLab

https://bitbucket.org/deeplab/deeplab-public
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[52] B. Hariharan, P. Arbeláez, R. Girshick, J. Malik. Simul-
taneous detection and segmentation. In Proceedings of the
13th European Conference on Computer Vision, Springer,
Zurich, Switzerland, vol. 8695, pp. 297–312, 2014.

[53] J. F. Dai, K. M. He, J. Sun. Boxsup: Exploiting bound-
ing boxes to supervise convolutional networks for semantic
segmentation. In Proceedings of IEEE International Confer-
ence on Computer Vision, IEEE, Santiago, Chile, pp. 1635–
1643, 2015.
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